Reaction participants Show >> << Hide
-
Namehelp_outline
L-cysteinyl-[sulfatase]
Identifier
RHEA-COMP:12900
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a thiol Identifier CHEBI:29256 Charge 0 Formula HSR SMILEShelp_outline S[*] 2D coordinates Mol file for the small molecule Search links Involved in 49 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an organic disulfide Identifier CHEBI:35489 Charge 0 Formula S2R2 SMILEShelp_outline [*]SS[*] 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
3-oxo-L-alanyl-[sulfatase]
Identifier
RHEA-COMP:12901
Reactive part
help_outline
- Name help_outline L-3-oxoalanine residue Identifier CHEBI:85621 Charge 0 Formula C3H3NO2 SMILEShelp_outline C([C@H](C(=O)[H])N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hydrogen sulfide Identifier CHEBI:29919 (CAS: 15035-72-0) help_outline Charge -1 Formula HS InChIKeyhelp_outline RWSOTUBLDIXVET-UHFFFAOYSA-M SMILEShelp_outline [S-][H] 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51152 | RHEA:51153 | RHEA:51154 | RHEA:51155 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A., Mariappan M., Schmidt B., Gande S.L., Mutenda K., Wenzel D., von Figura K., Dierks T.
Calpha-formylglycine (FGly) is the catalytic residue in the active site of sulfatases. In eukaryotes, it is generated in the endoplasmic reticulum by post-translational modification of a conserved cysteine residue. The FGly-generating enzyme (FGE), performing this modification, is an endoplasmic r ... >> More
Calpha-formylglycine (FGly) is the catalytic residue in the active site of sulfatases. In eukaryotes, it is generated in the endoplasmic reticulum by post-translational modification of a conserved cysteine residue. The FGly-generating enzyme (FGE), performing this modification, is an endoplasmic reticulum-resident enzyme that upon overexpression is secreted. Recombinant FGE was purified from cells and secretions to homogeneity. Intracellular FGE contains a high mannose type N-glycan, which is processed to the complex type in secreted FGE. Secreted FGE shows partial N-terminal trimming up to residue 73 without loosing catalytic activity. FGE is a calcium-binding protein containing an N-terminal (residues 86-168) and a C-terminal (residues 178-374) protease-resistant domain. The latter is stabilized by three disulfide bridges arranged in a clamp-like manner, which links the third to the eighth, the fourth to the seventh, and the fifth to the sixth cysteine residue. The innermost cysteine pair is partially reduced. The first two cysteine residues are located in the sequence preceding the N-terminal protease-resistant domain. They can form intramolecular or intermolecular disulfide bonds, the latter stabilizing homodimers. The C-terminal domain comprises the substrate binding site, as evidenced by yeast two-hybrid interaction assays and photocross-linking of a substrate peptide to proline 182. Peptides derived from all known human sulfatases served as substrates for purified FGE indicating that FGE is sufficient to modify all sulfatases of the same species. << Less
-
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T., Schmidt B., von Figura K.
In sulfatases a Calpha-formylglycine residue is found at a position where their cDNA sequences predict a cysteine residue. In multiple sulfatase deficiency, an inherited lysosomal storage disorder, catalytically inactive sulfatases are synthesized which retain the cysteine residue, indicating that ... >> More
In sulfatases a Calpha-formylglycine residue is found at a position where their cDNA sequences predict a cysteine residue. In multiple sulfatase deficiency, an inherited lysosomal storage disorder, catalytically inactive sulfatases are synthesized which retain the cysteine residue, indicating that the Calpha-formylglycine residue is required for sulfatase activity. Using in vitro translation in the absence or presence of transport competent microsomes we found that newly synthesized sulfatase polypeptides carry a cysteine residue and that the oxidation of its thiol group to an aldehyde is catalyzed in the endoplasmic reticulum. A linear sequence of 16 residues surrounding the Cys-69 in arylsulfatase A is sufficient to direct the oxidation. This novel protein modification occurs after or at a late stage of cotranslational protein translocation into the endoplasmic reticulum when the polypeptide is not yet folded to its native structure. << Less
Proc. Natl. Acad. Sci. U.S.A. 94:11963-11968(1997) [PubMed] [EuropePMC]
-
In vitro reconstitution of formylglycine-generating enzymes requires copper(I).
Knop M., Engi P., Lemnaru R., Seebeck F.P.
Formylglycine-generating enzymes (FGEs) catalyze O2 -dependent conversion of specific cysteine residues of arylsulfatases and alkaline phosphatases into formylglycine. The ability also to introduce unique aldehyde functions into recombinant proteins makes FGEs a powerful tool for protein engineeri ... >> More
Formylglycine-generating enzymes (FGEs) catalyze O2 -dependent conversion of specific cysteine residues of arylsulfatases and alkaline phosphatases into formylglycine. The ability also to introduce unique aldehyde functions into recombinant proteins makes FGEs a powerful tool for protein engineering. One limitation of this technology is poor in vitro activity of reconstituted FGEs. Although FGEs have been characterized as cofactor-free enzymes we report that the addition of one equivalent of Cu(I) increases catalytic efficiency more than 20-fold and enables the identification of stereoselective C-H bond cleavage at the substrate as the rate-limiting step. These findings remove previous limitations of FGE-based protein engineering and also pose new questions about the catalytic mechanism of this O2 -utilizing enzyme. << Less
-
Copper is a cofactor of the formylglycine-generating enzyme.
Knop M., Dang T.Q., Jeschke G., Seebeck F.P.
Formylglycine-generating enzyme (FGE) is an O<sub>2</sub> -utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that Cu<sup>I</sup> is an integral cofactor of this enzyme and binds with high affinity (K<sub>D</sub> =of 10<sup>-17</sup> m) to a pa ... >> More
Formylglycine-generating enzyme (FGE) is an O<sub>2</sub> -utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that Cu<sup>I</sup> is an integral cofactor of this enzyme and binds with high affinity (K<sub>D</sub> =of 10<sup>-17</sup> m) to a pair of active-site cysteines. These findings establish FGE as a novel type of copper enzyme. << Less
-
Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme.
Meury M., Knop M., Seebeck F.P.
The formylglycine-generating enzyme (FGE) is a unique copper protein that catalyzes oxygen-dependent C-H activation. We describe 1.66 Å- and 1.28 Å-resolution crystal structures of FGE from Thermomonospora curvata in complex with either Ag<sup>I</sup> or Cd<sup>II</sup> providing definitive eviden ... >> More
The formylglycine-generating enzyme (FGE) is a unique copper protein that catalyzes oxygen-dependent C-H activation. We describe 1.66 Å- and 1.28 Å-resolution crystal structures of FGE from Thermomonospora curvata in complex with either Ag<sup>I</sup> or Cd<sup>II</sup> providing definitive evidence for a high-affinity metal-binding site in this enzyme. The structures reveal a bis-cysteine linear coordination of the monovalent metal, and tetrahedral coordination of the bivalent metal. Similar coordination changes may occur in the active enzyme as a result of Cu<sup>I/II</sup> redox cycling. Complexation of copper atoms by two cysteine residues is common among copper-trafficking proteins, but is unprecedented for redox-active copper enzymes or synthetic copper catalysts. << Less
Angew. Chem. Int. Ed. Engl. 56:8115-8119(2017) [PubMed] [EuropePMC]
-
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson B.L., Ballister E.R., Skordalakes E., King D.S., Breidenbach M.A., Gilmore S.A., Berger J.M., Bertozzi C.R.
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE) ... >> More
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we describe the identification of a prokaryotic FGE from Mycobacterium tuberculosis. In addition, we solved the crystal structure of the Streptomyces coelicolor FGE homolog to 2.1 A resolution. The prokaryotic homolog exhibits remarkable structural similarity to human FGE, including the position of catalytic cysteine residues. Both biochemical and structural data indicate the presence of an oxidized cysteine modification in the active site that may be relevant to catalysis. In addition, we generated a mutant M. tuberculosis strain lacking FGE. Although global sulfatase activity was reduced in the mutant, a significant amount of residual sulfatase activity suggests the presence of FGE-independent sulfatases in this organism. << Less
-
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
Roeser D., Preusser-Kunze A., Schmidt B., Gasow K., Wittmann J.G., Dierks T., von Figura K., Rudolph M.G.
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disea ... >> More
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism. << Less
Proc. Natl. Acad. Sci. U.S.A. 103:81-86(2006) [PubMed] [EuropePMC]
-
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T., Miech C., Hummerjohann J., Schmidt B., Kertesz M.A., von Figura K.
Eukaryotic sulfatases carry an alpha-formylglycine residue that is essential for activity and is located within the catalytic site. This formylglycine is generated by posttranslational modification of a conserved cysteine residue. The arylsulfatase gene of Pseudomonas aeruginosa also encodes a cys ... >> More
Eukaryotic sulfatases carry an alpha-formylglycine residue that is essential for activity and is located within the catalytic site. This formylglycine is generated by posttranslational modification of a conserved cysteine residue. The arylsulfatase gene of Pseudomonas aeruginosa also encodes a cysteine at the critical position. This protein could be expressed in active form in a sulfatase-deficient strain of P. aeruginosa, thereby restoring growth on aromatic sulfates as sole sulfur source, and in Escherichia coli. Analysis of the mature protein expressed in E. coli revealed the presence of formylglycine at the expected position, showing that the cysteine is also converted to formylglycine in a prokaryotic sulfatase. Substituting the relevant cysteine by a serine codon in the P. aeruginosa gene led to expression of inactive sulfatase protein, lacking the formylglycine. The machinery catalyzing the modification of the Pseudomonas sulfatase in E. coli therefore resembles the eukaryotic machinery, accepting cysteine but not serine as a modification substrate. By contrast, in the arylsulfatase of Klebsiella pneumoniae a formylglycine is found generated by modification of a serine residue. The expression of both the Klebsiella and the Pseudomonas sulfatases as active enzymes in E. coli suggests that two modification systems are present, or that a common modification system is modulated by a cofactor. << Less
J. Biol. Chem. 273:25560-25564(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion.
Holder P.G., Jones L.C., Drake P.M., Barfield R.M., Banas S., de Hart G.W., Baker J., Rabuka D.
To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cyst ... >> More
To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity. << Less
Comments
The exact nature of the thiol involved is still not clear - L-dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione also acts in vitro, but it is not known whether it is used in vivo.