Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a primary alcohol Identifier CHEBI:15734 Charge 0 Formula CH3OR SMILEShelp_outline *C(O)([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 590 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [azurin]
Identifier
RHEA-COMP:11034
Reactive part
help_outline
- Name help_outline Cu2+ Identifier CHEBI:29036 (CAS: 15158-11-9) help_outline Charge 2 Formula Cu InChIKeyhelp_outline JPVYNHNXODAKFH-UHFFFAOYSA-N SMILEShelp_outline [Cu++] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aldehyde Identifier CHEBI:17478 Charge 0 Formula CHOR SMILEShelp_outline [H]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 925 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [azurin]
Identifier
RHEA-COMP:11035
Reactive part
help_outline
- Name help_outline Cu+ Identifier CHEBI:49552 (CAS: 17493-86-6) help_outline Charge 1 Formula Cu InChIKeyhelp_outline VMQMZMRVKUZKQL-UHFFFAOYSA-N SMILEShelp_outline [Cu+] 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51148 | RHEA:51149 | RHEA:51150 | RHEA:51151 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Crystal structure of quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer.
Oubrie A., Rozeboom H.J., Kalk K.H., Huizinga E.G., Dijkstra B.W.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been ... >> More
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent. << Less
-
Structure at 1.9 A resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5.
Chen Z.W., Matsushita K., Yamashita T., Fujii T.A., Toyama H., Adachi O., Bellamy H.D., Mathews F.S.
The type II quinohemoprotein alcohol dehydrogenase of Pseudomonas putida is a periplasmic enzyme that oxidizes substrate alcohols to the aldehyde and transfers electrons first to pyrroloquinoline quinone (PQQ) and then to an internal heme group. The 1.9 A resolution crystal structure reveals that ... >> More
The type II quinohemoprotein alcohol dehydrogenase of Pseudomonas putida is a periplasmic enzyme that oxidizes substrate alcohols to the aldehyde and transfers electrons first to pyrroloquinoline quinone (PQQ) and then to an internal heme group. The 1.9 A resolution crystal structure reveals that the enzyme contains a large N-terminal eight-stranded beta propeller domain (approximately 60 kDa) similar to methanol dehydrogenase and a small C-terminal c-type cytochrome domain (approximately 10 kDa) similar to the cytochrome subunit of p-cresol methylhydoxylase. The PQQ is bound near the axis of the propeller domain about 14 A from the heme. A molecule of acetone, the product of the oxidation of isopropanol present during crystallization, appears to be bound in the active site cavity. << Less
-
Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni.
de Jong G.A., Caldeira J., Sun J., Jongejan J.A., de Vries S., Loehr T.M., Moura I., Moura J.J., Duine J.A.
Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic inve ... >> More
Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS) << Less
-
Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols.
Toyama H., Fujii A., Matsushita K., Shinagawa E., Ameyama M., Adachi O.
A bacterial strain that can utilize several kinds of alcohols as its sole carbon and energy sources was isolated from soil and tentatively identified as Pseudomonas putida HK5. Three distinct dye-linked alcohol dehydrogenases (ADHs), each of which contained the prosthetic group pyrroloquinoline qu ... >> More
A bacterial strain that can utilize several kinds of alcohols as its sole carbon and energy sources was isolated from soil and tentatively identified as Pseudomonas putida HK5. Three distinct dye-linked alcohol dehydrogenases (ADHs), each of which contained the prosthetic group pyrroloquinoline quinone (PQQ), were formed in the soluble fractions of this strain grown on different alcohols. ADH I was formed most abundantly in the cells grown on ethanol and was similar to the quinoprotein ADH reported for P. putida (H. Görisch and M. Rupp, Antonie Leeuwenhoek 56:35-45, 1989) except for its isoelectric point. The other two ADHs, ADH IIB and ADH IIG, were formed separately in the cells grown on 1-butanol and 1,2-propanediol, respectively. Both of these enzymes contained heme c in addition to PQQ and functioned as quinohemoprotein dehydrogenases. Potassium ferricyanide was an available electron acceptor for ADHs IIB and IIG but not for ADH I. The molecular weights were estimated to be 69,000 for ADH IIB and 72,000 for ADH IIG, and both enzymes were shown to be monomers. Antibodies raised against each of the purified ADHs could distinguish the ADHs from one another. Immunoblot analysis showed that ADH I was detected in cells grown on each alcohol tested, but ethanol was the most effective inducer. ADH IIB was formed in the cells grown on alcohols of medium chain length and also on 1,3-butanediol. Induction of ADH IIG was restricted to 1,2-propanediol or glycerol, of which the former alcohol was more effective. These results from immunoblot analysis correlated well with the substrate specificities of the respective enzymes. Thus, three distinct quinoprotein ADHs were shown to be synthesized by a single bacterium under different growth conditions. << Less
J. Bacteriol. 177:2442-2450(1995) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5.
Matsushita K., Yamashita T., Aoki N., Toyama H., Adachi O.
A blue copper protein was purified together with a type II quinohemoprotein alcohol dehydrogenase (ADH IIB) from the soluble fraction of Pseudomonas putida HK5 grown on n-butanol. The purified blue copper protein was shown to be azurin, on the basis of several properties such as its absorption max ... >> More
A blue copper protein was purified together with a type II quinohemoprotein alcohol dehydrogenase (ADH IIB) from the soluble fraction of Pseudomonas putida HK5 grown on n-butanol. The purified blue copper protein was shown to be azurin, on the basis of several properties such as its absorption maximum (623 nm), its low molecular mass (17 500 Da), its acidic nature (pI of 4.1), its relatively high redox potential (306 mV), the presence of an intramolecular disulfide bond, and N-terminal amino acid sequence homology with respect to azurins from other sources, especially from P. putida NCIB 9869 and Pseudomonas fluorescens. Direct electron transfer from ADH IIB to azurin was shown to occur at a rate of 48-70 s-1. The apparent Km value of ADH IIB for azurin, determined by steady-state kinetics, was decreased several-fold by increasing the ionic strength. Furthermore, the extent of fluorescence quenching of ADH IIB due to the interaction with azurin was increased by increasing the ionic strength, but the binding constant for binding between ADH IIB and azurin was unchanged. The redox potential of azurin was increased 12 mV by incubation with ADH but not vice versa. Furthermore, the redox potential gap between ADH and azurin was increased from 102 to 126 mV by increasing the ionic strength. It is conceivable that a hydrophobic interaction is involved in the electron transfer between both proteins, and it is also suggested that the electron transfer may occur by a freely reversible on and off binding process but may not be related to the global binding process of both proteins. Thus, the results presented here strongly suggest that azurin works as an electron-transfer mediator in a PQQ-dependent alcohol oxidase respiratory chain in P. putida HK5. << Less
-
Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni.
Groen B.W., van Kleef M.A., Duine J.A.
Cell-free extracts of Pseudomonas testosteroni, grown on alcohols, contain quinoprotein alcohol dehydrogenase apoenzyme, as was demonstrated by the detection of dye-linked alcohol dehydrogenase activity after the addition of PQQ (pyrroloquinoline quinone). The apoenzyme was purified to homogeneity ... >> More
Cell-free extracts of Pseudomonas testosteroni, grown on alcohols, contain quinoprotein alcohol dehydrogenase apoenzyme, as was demonstrated by the detection of dye-linked alcohol dehydrogenase activity after the addition of PQQ (pyrroloquinoline quinone). The apoenzyme was purified to homogeneity, and the holoenzyme was characterized. Primary alcohols (except methanol), secondary alcohols and aldehydes were substrates, and a broad range of dyes functioned as artificial electron acceptor. Optimal activity was observed at pH 7.7, and the presence of Ca2+ in the assay appeared to be essential for activity. The apoenzyme was found to be a monomer (Mr 67,000 +/-5000), with an absorption spectrum similar to that of oxidized cytochrome c. After reconstitution to the holoenzyme by the addition of PQQ, addition of substrate changed the absorption spectrum to that of reduced cytochrome c, indicating that the haem c group participated in the enzymic mechanism. The enzyme contained one haem c group, and full reconstitution was achieved with 1 mol of PQQ/mol. In view of the aberrant properties, it is proposed to distinguish the enzyme from the common quinoprotein alcohol dehydrogenases by using the name 'quinohaemoprotein alcohol dehydrogenase'. Incorporation of PQQ into the growth medium resulted in a significant shortening of lag time and increase in growth rate. Therefore PQQ appears to be a vitamin for this organism during growth on alcohols, reconstituting the apoenzyme to a functional holoenzyme. << Less