Reaction participants Show >> << Hide
- Name help_outline a primary alcohol Identifier CHEBI:15734 Charge 0 Formula CH3OR SMILEShelp_outline *C(O)([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 597 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(III)-[cytochrome c]
Identifier
RHEA-COMP:14399
Reactive part
help_outline
- Name help_outline Fe3+ Identifier CHEBI:29034 (CAS: 20074-52-6) help_outline Charge 3 Formula Fe InChIKeyhelp_outline VTLYFUHAOXGGBS-UHFFFAOYSA-N SMILEShelp_outline [Fe+3] 2D coordinates Mol file for the small molecule Search links Involved in 248 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aldehyde Identifier CHEBI:17478 Charge 0 Formula CHOR SMILEShelp_outline [H]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-[cytochrome c]
Identifier
RHEA-COMP:10350
Reactive part
help_outline
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:51020 | RHEA:51021 | RHEA:51022 | RHEA:51023 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:79362
- RHEA:79338
- RHEA:79334
- RHEA:79326
- RHEA:79322
- RHEA:62207
- RHEA:62203
- RHEA:55947
- RHEA:51007
- RHEA:43435
More general form(s) of this reaction
Publications
-
Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase.
Schobert M., Goerisch H.
Pseudomonas aeruginosa ATCC 17933 grown aerobically on ethanol produces a soluble cytochrome c550 together with a quinoprotein ethanol dehydrogenase. A 3.2 kb genomic DNA fragment containing the gene encoding cytochrome c550 was cloned and sequenced. Two other complete and two truncated ORFs were ... >> More
Pseudomonas aeruginosa ATCC 17933 grown aerobically on ethanol produces a soluble cytochrome c550 together with a quinoprotein ethanol dehydrogenase. A 3.2 kb genomic DNA fragment containing the gene encoding cytochrome c550 was cloned and sequenced. Two other complete and two truncated ORFs were also identified. A truncated ORF encoding the quinoprotein ethanol dehydrogenase (exaA) was found upstream of the cytochrome c550 gene (exaB) and in reverse orientation. An ORF encoding a NAD(+)-dependent acetaldehyde dehydrogenase (exaC) was located downstream of the cytochrome c550 gene and in the same orientation. Another ORF showed similarity to the pqqA gene and a truncated ORF similarity to the pqqB gene, both involved in the biosynthesis of the prosthetic group PQQ. The organization of these genes was found to be different from the well-studied methanol oxidation system in methylotrophic bacteria. The deduced amino acid sequence of cytochrome c550 from P. aeruginosa showed some similarity to cytochrome c6 of the alga Chlamydomonas reinhardtii and the haem domain of quinohaemoprotein alcohol dehydrogenases of acetic acid bacteria, but no similarity to the soluble cytochrome cL of the quinoprotein methanol oxidation system of methylotrophs could be detected. A mutant of P. aeruginosa with an interrupted cytochrome c550 gene was unable to grow on ethanol, which proves that cytochrome c550 is an essential component of the ethanol oxidation system in this organism. << Less
-
Characterisation of the PQQ cofactor radical in quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa by electron paramagnetic resonance spectroscopy.
Kay C.W., Mennenga B., Goerisch H., Bittl R.
The binding pocket of the pyrroloquinoline quinone (PQQ) cofactor in quinoprotein alcohol dehydrogenases contains a characteristic disulphide ring formed by two adjacent cysteine residues. To analyse the function of this unusual structural motif we have investigated the wild-type and a double cyst ... >> More
The binding pocket of the pyrroloquinoline quinone (PQQ) cofactor in quinoprotein alcohol dehydrogenases contains a characteristic disulphide ring formed by two adjacent cysteine residues. To analyse the function of this unusual structural motif we have investigated the wild-type and a double cysteine:alanine mutant of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa by electron paramagnetic resonance (EPR) spectroscopy. Thus, we have obtained the principal values for the full rhombic g-tensor of the PQQ semiquinone radical by high-field (94 GHz) EPR necessary for a discrimination of radical species in dehydrogenases containing PQQ together with other redox-active cofactors. Our results show that the characteristic disulphide ring is no prerequisite for the formation of the functionally important semiquinone form of PQQ. << Less
-
Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols.
Toyama H., Fujii A., Matsushita K., Shinagawa E., Ameyama M., Adachi O.
A bacterial strain that can utilize several kinds of alcohols as its sole carbon and energy sources was isolated from soil and tentatively identified as Pseudomonas putida HK5. Three distinct dye-linked alcohol dehydrogenases (ADHs), each of which contained the prosthetic group pyrroloquinoline qu ... >> More
A bacterial strain that can utilize several kinds of alcohols as its sole carbon and energy sources was isolated from soil and tentatively identified as Pseudomonas putida HK5. Three distinct dye-linked alcohol dehydrogenases (ADHs), each of which contained the prosthetic group pyrroloquinoline quinone (PQQ), were formed in the soluble fractions of this strain grown on different alcohols. ADH I was formed most abundantly in the cells grown on ethanol and was similar to the quinoprotein ADH reported for P. putida (H. Görisch and M. Rupp, Antonie Leeuwenhoek 56:35-45, 1989) except for its isoelectric point. The other two ADHs, ADH IIB and ADH IIG, were formed separately in the cells grown on 1-butanol and 1,2-propanediol, respectively. Both of these enzymes contained heme c in addition to PQQ and functioned as quinohemoprotein dehydrogenases. Potassium ferricyanide was an available electron acceptor for ADHs IIB and IIG but not for ADH I. The molecular weights were estimated to be 69,000 for ADH IIB and 72,000 for ADH IIG, and both enzymes were shown to be monomers. Antibodies raised against each of the purified ADHs could distinguish the ADHs from one another. Immunoblot analysis showed that ADH I was detected in cells grown on each alcohol tested, but ethanol was the most effective inducer. ADH IIB was formed in the cells grown on alcohols of medium chain length and also on 1,3-butanediol. Induction of ADH IIG was restricted to 1,2-propanediol or glycerol, of which the former alcohol was more effective. These results from immunoblot analysis correlated well with the substrate specificities of the respective enzymes. Thus, three distinct quinoprotein ADHs were shown to be synthesized by a single bacterium under different growth conditions. << Less
J. Bacteriol. 177:2442-2450(1995) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity.
Keitel T., Diehl A., Knaute T., Stezowski J.J., Hoehne W., Goerisch H.
The homodimeric enzyme form of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa ATCC 17933 crystallizes readily with the space group R3. The X-ray structure was solved at 2.6 A resolution by molecular replacement. Aside from differences in some loops, the folding of the enzyme is ver ... >> More
The homodimeric enzyme form of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa ATCC 17933 crystallizes readily with the space group R3. The X-ray structure was solved at 2.6 A resolution by molecular replacement. Aside from differences in some loops, the folding of the enzyme is very similar to the large subunit of the quinoprotein methanol dehydrogenases from Methylobacterium extorquens or Methylophilus W3A1. Eight W-shaped beta-sheet motifs are arranged circularly in a propeller-like fashion forming a disk-shaped superbarrel. No electron density for a small subunit like that in methanol dehydrogenase could be found. The prosthetic group is located in the centre of the superbarrel and is coordinated to a calcium ion. Most amino acid residues found in close contact with the prosthetic group pyrroloquinoline quinone and the Ca(2+) are conserved between the quinoprotein ethanol dehydrogenase structure and that of the methanol dehydrogenases. The main differences in the active-site region are a bulky tryptophan residue in the active-site cavity of methanol dehydrogenase, which is replaced by a phenylalanine and a leucine side-chain in the ethanol dehydrogenase structure and a leucine residue right above the pyrrolquinoline quinone group in methanol dehydrogenase which is replaced by a tryptophan side-chain. Both amino acid exchanges appear to have an important influence, causing different substrate specificities of these otherwise very similar enzymes. In addition to the Ca(2+) in the active-site cavity found also in methanol dehydrogenase, ethanol dehydrogenase contains a second Ca(2+)-binding site at the N terminus, which contributes to the stability of the native enzyme. << Less
-
Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa.
Rupp M., Goerisch H.
Pseudomonas aeruginosa ATCC 17933 when grown on ethanol produces high levels of a quinoprotein ethanol dehydrogenase, which amounts to 7% of the soluble protein. The enzyme has been purified to homogeneity and it crystallizes readily in the presence of polyethylene glycol 1550 or 6000. The ethanol ... >> More
Pseudomonas aeruginosa ATCC 17933 when grown on ethanol produces high levels of a quinoprotein ethanol dehydrogenase, which amounts to 7% of the soluble protein. The enzyme has been purified to homogeneity and it crystallizes readily in the presence of polyethylene glycol 1550 or 6000. The ethanol dehydrogenase (Km(ethanol) = 14 microM) resembles the dye-dependent quinoprotein methanol dehydrogenases of methylotrophic bacteria, but has a low affinity for methanol (Km (methanol) = 94mM). In addition the enzyme oxidizes secondary alcohols. With its catalytic properties the ethanol dehydrogenase is similar to the enzyme isolated from P. aeruginosa LMD 80.53 (Groen, B., Frank, J. Jzn. & Duine, J.A. (1984) Biochem. J. 223, 921-924). In contrast to this enzyme from P. aeruginosa LMD 80.53, which is a monomer, the ethanol dehydrogenase isolated from P. aeruginosa ATCC 17933 is a dimer of identical subunits of relative molecular mass 60,000. The N-terminal amino acid is lysine. Inactivation with cyclopropanone ethylhemiketal reveals one molecule of pyrroloquinoline quinone per subunit. As shown by active enzyme sedimentation, the dimer is the enzymatically active form. << Less
Biol. Chem. Hoppe-Seyler 369:431-439(1988) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550.
Mennenga B., Kay C.W., Goerisch H.
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Ps ... >> More
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca(2+). The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c(550) the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c(550). << Less
Arch. Microbiol. 191:361-367(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.