Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 4-amino-4-dedimethylamino-anhydrotetracycline Identifier CHEBI:133697 Charge 0 Formula C20H18N2O7 InChIKeyhelp_outline INUFQOJZVFLXMQ-OWYOPICZSA-N SMILEShelp_outline [C@@]12([C@](C(C3=C(C=4C(=CC=CC4C(=C3C1)C)O)O)=O)(C(C(C(N)=O)=C([C@H]2[NH3+])[O-])=O)O)[H] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-methylamino-4-dedimethylamino-anhydrotetracycline Identifier CHEBI:133696 Charge 0 Formula C21H20N2O7 InChIKeyhelp_outline IIHPMGDKNZPGON-QYAMTVPHSA-N SMILEShelp_outline [C@@]12([C@](C(C3=C(C=4C(=CC=CC4C(=C3C1)C)O)O)=O)(C(C(C(N)=O)=C([C@H]2[NH2+]C)[O-])=O)O)[H] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:50764 | RHEA:50765 | RHEA:50766 | RHEA:50767 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identifying the minimal enzymes required for anhydrotetracycline biosynthesis.
Zhang W., Watanabe K., Cai X., Jung M.E., Tang Y., Zhan J.
The cyclohexenone ring A of tetracyclines exhibits unique structural features not observed among other aromatic polyketides. These substitutions include the C2 primary amide, C4 dimethylamine, and the C12a tertiary alcohol. Here we report the identification and reconstitution of the minimum set of ... >> More
The cyclohexenone ring A of tetracyclines exhibits unique structural features not observed among other aromatic polyketides. These substitutions include the C2 primary amide, C4 dimethylamine, and the C12a tertiary alcohol. Here we report the identification and reconstitution of the minimum set of enzymes required for the biosynthesis of anhydrotetracycline (ATC, 5), the first intermediate in the tetracycline biosynthetic pathway that contains the fully functionalized ring A. Using a combination of in vivo and in vitro approaches, we confirmed OxyL, OxyQ, and OxyT to be the only enzymes required to convert 6-methylpretetramid 1 into 5. OxyL is a NADPH-dependent dioxygenase that introduces two oxygen atoms into 1 to yield the unstable intermediate 4-keto-ATC 2. The aminotransferase OxyQ catalyzes the reductive amination of C4-keto of 2, yielding 4-amino-ATC 3. Furthermore, the N, N-dimethyltransferase OxyT catalyzes the formation of 5 from 3 in a (S)-adenosylmethionine (SAM)-dependent manner. Finally, a "non-natural" anhydrotetracycline derivative was generated, demonstrating that our heterologous host/vector pair can be a useful platform toward the engineered biosynthesis of tetracycline analogues. << Less
J. Am. Chem. Soc. 130:6068-6069(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.