Reaction participants Show >> << Hide
- Name help_outline dimethyl sulfone Identifier CHEBI:9349 (Beilstein: 1737717; CAS: 67-71-0) help_outline Charge 0 Formula C2H6O2S InChIKeyhelp_outline HHVIBTZHLRERCL-UHFFFAOYSA-N SMILEShelp_outline CS(C)(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 794 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 804 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (Beilstein: 1209228; CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methanesulfinate Identifier CHEBI:133603 Charge -1 Formula CH3O2S InChIKeyhelp_outline XNEFVTBPCXGIRX-UHFFFAOYSA-M SMILEShelp_outline CS([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:50716 | RHEA:50717 | RHEA:50718 | RHEA:50719 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
Endoh T., Habe H., Nojiri H., Yamane H., Omori T.
Pseudomonas putida DS1 is able to utilize dimethyl sulphide through dimethyl sulphoxide, dimethyl sulphone (DMSO2), methanesulphonate (MSA) and sulphite as a sulphur source. We previously demonstrated that sfnR encoding a sigma54-dependent transcriptional regulator is essential for DMSO2 utilizati ... >> More
Pseudomonas putida DS1 is able to utilize dimethyl sulphide through dimethyl sulphoxide, dimethyl sulphone (DMSO2), methanesulphonate (MSA) and sulphite as a sulphur source. We previously demonstrated that sfnR encoding a sigma54-dependent transcriptional regulator is essential for DMSO2 utilization by P. putida DS1. To identify the target genes of SfnR, we carried out transposon mutagenesis on an sfnR disruptant (DMSO2-utilization-defective phenotype) using mini-Tn5, which contains two outward-facing constitutively active promoters; as a result, we obtained a mutant that restored the ability to utilize DMSO2. The DMSO2-positive mutant carried a mini-Tn5 insertion in the intergenic region between two opposite-facing operons, sfnAB and sfnFG. Both sfnA and sfnB products were similar to acyl-CoA dehydrogenase family proteins, whereas sfnF and sfnG encoded a putative NADH-dependent FMN reductase (SfnF) and an FMNH2-dependent monooxygenase (SfnG). Disruption and complementation of the sfn genes indicated that the sfnG product is essential for DMSO2 utilization by P. putida DS1. Furthermore, an enzyme assay demonstrated that SfnG is an FMNH2-dependent DMSO2 monooxygenase that converts DMSO2 to MSA. It was revealed that the expression of the sfnFG operon is directly activated by the binding of SfnR at its upstream region. Site-directed mutagenesis of the SfnR binding sequences allowed us to define a potential recognition sequence for SfnR. These results provided insight into regulation of sulphate starvation-induced genes in bacteria. << Less
-
The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
Wicht D.K.
The biochemical pathway through which sulfur may be assimilated from dimethylsulfide (DMS) is proposed to proceed via oxidation of DMS to dimethylsulfoxide (DMSO) and subsequent conversion of DMSO to dimethylsulfone (DMSO2). Analogous chemical oxidation processes involving biogenic DMS in the atmo ... >> More
The biochemical pathway through which sulfur may be assimilated from dimethylsulfide (DMS) is proposed to proceed via oxidation of DMS to dimethylsulfoxide (DMSO) and subsequent conversion of DMSO to dimethylsulfone (DMSO2). Analogous chemical oxidation processes involving biogenic DMS in the atmosphere result in the deposition of DMSO2 into the terrestrial environment. Elucidating the enzymatic pathways that involve DMSO2 contribute to our understanding of the global sulfur cycle. Dimethylsulfone monooxygenase SfnG and flavin mononucleotide (FMN) reductase MsuE from the genome of the aerobic soil bacterium Pseudomonas fluorescens Pf0-1 were produced in Escherichia coli, purified, and biochemically characterized. The enzyme MsuE functions as a reduced nicotinamide adenine dinucleotide (NADH)-dependent FMN reductase with apparent steady state kinetic parameters of Km = 69 μM and kcat/Km = 9 min(-1) μM (-1) using NADH as the variable substrate, and Km = 8 μM and kcat/Km = 105 min(-1) μM (-1) using FMN as the variable substrate. The enzyme SfnG functions as a flavoprotein monooxygenase and converts DMSO2 to methanesulfinate in the presence of FMN, NADH, and MsuE, as evidenced by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The results suggest that methanesulfinate is a biochemical intermediate in sulfur assimilation. << Less
Arch. Biochem. Biophys. 604:159-166(2016) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.