Reaction participants Show >> << Hide
- Name help_outline (12S)-hydroperoxy-(5Z,8Z,10E,14Z)-eicosatetraenoate Identifier CHEBI:57444 Charge -1 Formula C20H31O4 InChIKeyhelp_outline ZIOZYRSDNLNNNJ-LQWMCKPYSA-M SMILEShelp_outline CCCCC\C=C/C[C@H](OO)\C=C\C=C/C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glutathione Identifier CHEBI:57925 Charge -1 Formula C10H16N3O6S InChIKeyhelp_outline RWSXRVCMGQZWBV-WDSKDSINSA-M SMILEShelp_outline [NH3+][C@@H](CCC(=O)N[C@@H](CS)C(=O)NCC(=O)[O-])C(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 104 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (12S)-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoate Identifier CHEBI:90680 Charge -1 Formula C20H31O3 InChIKeyhelp_outline ZNHVWPKMFKADKW-LQWMCKPYSA-M SMILEShelp_outline C(=C\[C@H](C/C=C\CCCCC)O)/C=C\C/C=C\CCCC(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glutathione disulfide Identifier CHEBI:58297 Charge -2 Formula C20H30N6O12S2 InChIKeyhelp_outline YPZRWBKMTBYPTK-BJDJZHNGSA-L SMILEShelp_outline [NH3+][C@@H](CCC(=O)N[C@@H](CSSC[C@H](NC(=O)CC[C@H]([NH3+])C([O-])=O)C(=O)NCC([O-])=O)C(=O)NCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:50708 | RHEA:50709 | RHEA:50710 | RHEA:50711 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism.
Sutherland M., Shankaranarayanan P., Schewe T., Nigam S.
The 12-lipoxygenase pathway of arachidonic acid metabolism in platelets and other cells is bifurcated into a reduction route yielding 12-hydroxyeicosatetraenoic acid (12-HETE) and an isomerization route forming hepoxilins. Here we show for the first time the presence of phospholipid hydroperoxide ... >> More
The 12-lipoxygenase pathway of arachidonic acid metabolism in platelets and other cells is bifurcated into a reduction route yielding 12-hydroxyeicosatetraenoic acid (12-HETE) and an isomerization route forming hepoxilins. Here we show for the first time the presence of phospholipid hydroperoxide glutathione peroxidase (PHGPx) protein and its activity in platelets. The ratio of the activity of PHGPx to that of cytosolic glutathione peroxidase (GPx-1) was consistently found to be approx. 1:60 in platelets and UT7 megakaryoblasts. Moreover, short-lived PHGPx mRNA was detected in megakaryocytes but not in platelets. Carboxymethylation of selenium-containing glutathione peroxidases by iodoacetate, which results in the inactivation of PHGPx and GPx-1 without inhibition of 12-lipoxygenase, markedly altered the pattern of arachidonic acid metabolism in human platelets. Whereas the formation of 12-HETE was inhibited by 80%, a concomitant accumulation of 12-hydroperoxyeicosatetraenoic acid (12-HpETE) by two orders of magnitude as well as the formation of hepoxilins A(3) and B(3) were observed. The formation of hepoxilins also occurred when 12-HpETE was added to untreated platelets. In selenium-deficient UT7 cells, which were devoid of GPx-1 but not of PHGPx, the reduction of 12-HPETE was retained, albeit with a lower rate than in control cells containing GPx-1. We therefore believe that both GPx-1 and PHGPx are involved in the regulatory network of the 12-lipoxygenase pathway in platelets and other mammalian cells. Moreover, the diminution of hydroperoxide tone in platelets incubated with arachidonic acid leads primarily to the formation of 12-HETE, whereas the increase in hydroperoxide tone (a situation found under oxidative stress or selenium deficiency or on incubation with 12-HPETE) partly diverts the 12-lipoxygenase pathway from the reduction route to the isomerization route, thus resulting in the formation of hepoxilins. << Less
-
Side-by-side comparison of recombinant human glutathione peroxidases identifies overlapping substrate specificities for soluble hydroperoxides.
Schwarz M., Loeser A., Cheng Q., Wichmann-Costaganna M., Schaedel P., Werz O., Arner E.S., Kipp A.P.
Five out of eight human glutathione peroxidases (GPXs) are selenoproteins, representing proteins that contain selenium as part of the amino acid selenocysteine. The GPXs are important for reducing hydroperoxides in a glutathione-consuming manner and thus regulate cellular redox homeostasis. GPX1, ... >> More
Five out of eight human glutathione peroxidases (GPXs) are selenoproteins, representing proteins that contain selenium as part of the amino acid selenocysteine. The GPXs are important for reducing hydroperoxides in a glutathione-consuming manner and thus regulate cellular redox homeostasis. GPX1, GPX2, and GPX4 represent the three main cytosolic GPXs, but they differ in their expression patterns with GPX1 and GPX4 being expressed ubiquitously, whereas GPX2 is mainly expressed in epithelial cells. GPX1 and GPX2 have been described to reduce soluble hydroperoxides, while GPX4 reduces complex lipid hydroperoxides, thus protecting cells from lipid peroxidation and ferroptosis. But most of these data are derived from cells that are devoid of one of the isoforms and thus, compensation or other cellular effects might affect the conclusions. So far, the use of isolated recombinant human selenoprotein glutathione peroxidases in pure enzyme assays has not been employed to study their substrate specificities side by side. Using recombinant GPX1, GPX2, and GPX4 produced in E. coli we here assessed their GPX activities by a NADPH-consuming glutathione reductase-coupled assay with 17 different peroxides (all at 50 μM) as substrates. GPX4 was clearly the only isoform able to reduce phosphatidylcholine hydroperoxide. In contrast, small soluble hydroperoxides such as H<sub>2</sub>O<sub>2</sub>, cumene hydroperoxide, and tert-butyl hydroperoxide were reduced by all three isoforms, but with approximately 10-fold higher efficiency for GPX1 in comparison to GPX2 and GPX4. Also, several fatty acid-derived hydroperoxides were reduced by all three isoforms and again GPX1 had the highest activity. Interestingly, the stereoisomerism of the fatty acid-derived hydroperoxides clearly affected the activity of the GPX enzymes. Overall, distinct substrate specificity is obvious for GPX4, but not so when comparing GPX1 and GPX2. Clearly GPX1 was the most potent isoform of the three GPXs in terms of turnover in reduction of soluble and fatty-acid derived hydroperoxides. << Less
Redox Biol. 59:102593-102593(2023) [PubMed] [EuropePMC]
This publication is cited by 14 other entries.
-
Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia.
Ho Y.S., Magnenat J.L., Bronson R.T., Cao J., Gargano M., Sugawara M., Funk C.D.
Glutathione peroxidase, a selenium-containing enzyme, is believed to protect cells from the toxicity of hydroperoxides. The physiological role of this enzyme has previously been implicated mainly using animals fed with a selenium-deficient diet. Although selenium deficiency also affects the activi ... >> More
Glutathione peroxidase, a selenium-containing enzyme, is believed to protect cells from the toxicity of hydroperoxides. The physiological role of this enzyme has previously been implicated mainly using animals fed with a selenium-deficient diet. Although selenium deficiency also affects the activity of several other cellular selenium-containing enzymes, a dramatic decrease of glutathione peroxidase activity has been postulated to play a role in the pathogenesis of a number of diseases, particularly those whose progression is associated with an overproduction of reactive oxygen species, found in selenium-deficient animals. To further clarify the physiological relevance of this enzyme, a model of mice deficient in cellular glutathione peroxidase (GSHPx-1), the major isoform of glutathione peroxidase ubiquitously expressed in all types of cells, was generated by gene-targeting technology. Mice deficient in this enzyme were apparently healthy and fertile and showed no increased sensitivity to hyperoxia. Their tissues exhibited neither a retarded rate in consuming extracellular hydrogen peroxide nor an increased content of protein carbonyl groups and lipid peroxidation compared with those of wild-type mice. However, platelets from GSHPx-1-deficient mice incubated with arachidonic acid generated less 12-hydroxyeicosatetraenoic acid and more polar products relative to control platelets at a higher concentration of arachidonic acid, presumably reflecting a decreased ability to reduce the 12-hydroperoxyeicosatetraenoic acid intermediate. These results suggest that the contribution of GSHPx-1 to the cellular antioxidant mechanism under normal animal development and physiological conditions and to the pulmonary defense against hyperoxic insult is very limited. Nevertheless, the potential antioxidant role of this enzyme in protecting cells and animals against the pathogenic effect of reactive oxygen species in other disorders remains to be defined. The knockout mouse model described in this report will also provide a new tool for future study to distinguish the physiological role of this enzyme from other selenium-containing proteins in mammals under normal and disease states. << Less