Reaction participants Show >> << Hide
- Name help_outline nonan-2-one Identifier CHEBI:77927 (CAS: 821-55-6) help_outline Charge 0 Formula C9H18O InChIKeyhelp_outline VKCYHJWLYTUGCC-UHFFFAOYSA-N SMILEShelp_outline CCCCCCCC(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,316 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3E)-nonen-2-one Identifier CHEBI:133457 (CAS: 18402-83-0) help_outline Charge 0 Formula C9H16O InChIKeyhelp_outline HDKLIZDXVUCLHQ-BQYQJAHWSA-N SMILEShelp_outline CCCCC/C=C/C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,310 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:50616 | RHEA:50617 | RHEA:50618 | RHEA:50619 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase.
Dick R.A., Kwak M.K., Sutter T.R., Kensler T.W.
There are several known routes for the metabolic detoxication of alpha,beta-unsaturated aldehydes and ketones, including conjugation to glutathione and reduction and oxidation of the aldehyde to an alcohol and a carboxylic acid, respectively. In this study, we describe a fourth class of detoxicati ... >> More
There are several known routes for the metabolic detoxication of alpha,beta-unsaturated aldehydes and ketones, including conjugation to glutathione and reduction and oxidation of the aldehyde to an alcohol and a carboxylic acid, respectively. In this study, we describe a fourth class of detoxication that involves the reduction of the alpha,beta-carbon=carbon double bond to a single bond. This reaction is catalyzed by NAD(P)H-dependent alkenal/one oxidoreductase (AO), an enzyme heretofore known as leukotriene B4 12-hydroxydehydrogenase, 15-oxoprostaglandin 13-reductase, and dithiolethione-inducible gene-1. AO is shown to effectively reduce cytotoxic lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) (k(cat) = 4.0 x 10(3) min(-1); k(cat)/K(m) = 3.3 x 10(7) min(-1) M(-1)) and acrolein (k(cat) = 2.2 x 10(2) min(-1); k(cat)/K(m) = 1.5 x 10(6) min(-1) M(-1)) and common industrial compounds such as ethyl vinyl ketone (k(cat) = 9.6 x 10(3) min(-1); k(cat)/K(m) = 8.8 x 10(7) min(-1) M(-1)) and 15-oxoprostaglandin E1 (k(cat) = 2.4 x 10(3) min(-1); k(cat)/K(m) = 2.4 x 10(9) min(-1) M(-1)). Furthermore, transfection of human embryonic kidney cells with a rat liver AO expression vector protected these cells from challenge with HNE. The concentration of HNE at which 50% of the cells were killed after 24 h increased from approximately 15 microM in control cells to approximately 70 microM in AO-transfected cells. Overexpression of AO also completely abolished protein alkylation by HNE at all concentrations tested (up to 30 microM). Thus, we describe a novel antioxidative activity of a previously characterized bioactive lipid-metabolizing enzyme that could prove to be therapeutically or prophylactically useful due to its high catalytic rate and inducibility. << Less
J. Biol. Chem. 276:40803-40810(2001) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis.
Mesa J., Alsina C., Oppermann U., Pares X., Farres J., Porte S.
Prostaglandins (PGs) are lipid compounds derived from arachidonic acid by the action of cyclooxygenases, acting locally as messenger molecules in a wide variety of physiological processes, such as inflammation, cell survival, apoptosis, smooth muscle contraction, adipocyte differentiation, vasodil ... >> More
Prostaglandins (PGs) are lipid compounds derived from arachidonic acid by the action of cyclooxygenases, acting locally as messenger molecules in a wide variety of physiological processes, such as inflammation, cell survival, apoptosis, smooth muscle contraction, adipocyte differentiation, vasodilation and platelet aggregation inhibition. In the inactivating pathway of PGs, the first metabolic intermediates are 15-keto-PGs, which are further converted into 13,14-dihydro-15-keto-PGs by different enzymes having 15-keto-PG reductase activity. Three human PG reductases (PGR), zinc-independent members of the medium-chain dehydrogenase/reductase (MDR) superfamily, perform the first irreversible step of the degradation pathway. We have focused on the characterization of the recombinant human enzyme prostaglandin reductase 1 (PGR1), also known as leukotriene B4 dehydrogenase. Only a partial characterization of this enzyme, isolated from human placenta, had been previously reported. In the present work, we have developed a new HPLC-based method for the determination of the 15-keto-PG reductase activity. We have performed an extensive kinetic characterization of PGR1, which catalyzes the NADPH-dependent reduction of the α,β-double bond of aliphatic and aromatic aldehydes and ketones, and 15-keto-PGs. PGR1 also shows low activity in the oxidation of leukotriene B4. The best substrates in terms of kcat/Km were 15-keto-PGE2, trans-3-nonen-2-one and trans-2-decenal. Molecular docking simulations, based on the three-dimensional structure of the human enzyme (PDB ID 2Y05), and site-directed mutagenesis studies were performed to pinpoint important structural determinants, highlighting the role of Arg56 and Tyr245 in 15-keto-PG binding. Finally, inhibition analysis was done using non-steroidal anti-inflammatory drugs (NSAIDs) as potential inhibitors. << Less
Chem. Biol. Interact. 234:105-113(2015) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.