Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 6-methylpretetramide Identifier CHEBI:132734 Charge -1 Formula C20H14NO6 InChIKeyhelp_outline WBDQDVXPSGTJAV-UHFFFAOYSA-M SMILEShelp_outline C=12C(=CC3=CC(O)=C(C(=C3C1O)[O-])C(N)=O)C(=C4C=CC=C(C4=C2O)O)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-hydroxy-6-methylpretetramide Identifier CHEBI:28464 Charge 0 Formula C20H15NO7 InChIKeyhelp_outline WSYJHDYOVBGOSR-UHFFFAOYSA-N SMILEShelp_outline C=12C(=CC3=C(C(O)=C(C(=C3C1O)O)C(N)=O)O)C(=C4C=CC=C(C4=C2O)O)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:50008 | RHEA:50009 | RHEA:50010 | RHEA:50011 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identifying the minimal enzymes required for anhydrotetracycline biosynthesis.
Zhang W., Watanabe K., Cai X., Jung M.E., Tang Y., Zhan J.
The cyclohexenone ring A of tetracyclines exhibits unique structural features not observed among other aromatic polyketides. These substitutions include the C2 primary amide, C4 dimethylamine, and the C12a tertiary alcohol. Here we report the identification and reconstitution of the minimum set of ... >> More
The cyclohexenone ring A of tetracyclines exhibits unique structural features not observed among other aromatic polyketides. These substitutions include the C2 primary amide, C4 dimethylamine, and the C12a tertiary alcohol. Here we report the identification and reconstitution of the minimum set of enzymes required for the biosynthesis of anhydrotetracycline (ATC, 5), the first intermediate in the tetracycline biosynthetic pathway that contains the fully functionalized ring A. Using a combination of in vivo and in vitro approaches, we confirmed OxyL, OxyQ, and OxyT to be the only enzymes required to convert 6-methylpretetramid 1 into 5. OxyL is a NADPH-dependent dioxygenase that introduces two oxygen atoms into 1 to yield the unstable intermediate 4-keto-ATC 2. The aminotransferase OxyQ catalyzes the reductive amination of C4-keto of 2, yielding 4-amino-ATC 3. Furthermore, the N, N-dimethyltransferase OxyT catalyzes the formation of 5 from 3 in a (S)-adenosylmethionine (SAM)-dependent manner. Finally, a "non-natural" anhydrotetracycline derivative was generated, demonstrating that our heterologous host/vector pair can be a useful platform toward the engineered biosynthesis of tetracycline analogues. << Less
J. Am. Chem. Soc. 130:6068-6069(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Identification of OxyE as an ancillary oxygenase during tetracycline biosynthesis.
Wang P., Zhang W., Zhan J., Tang Y.
The double hydroxylation of 6-pretetramid to 4-keto-anhydrotetracycline is a key tailoring reaction during the biosynthesis of the broad-spectrum antibiotic tetracyclines. It has been shown previously by heterologous reconstitution that OxyL is a dioxygenase and is the only enzyme required to cata ... >> More
The double hydroxylation of 6-pretetramid to 4-keto-anhydrotetracycline is a key tailoring reaction during the biosynthesis of the broad-spectrum antibiotic tetracyclines. It has been shown previously by heterologous reconstitution that OxyL is a dioxygenase and is the only enzyme required to catalyze the insertion of oxygen atoms at the C-12a and C-4 positions. We report here that OxyE, a flavin adenine dinucleotide (FAD)-dependent hydroxylase homologue, is an ancillary mono-oxygenase for OxyL during oxytetracycline biosynthesis in Streptomyces rimosus. By using both gene disruption and heterologous reconstitution approaches, we demonstrated that OxyE plays a nonessential, but important role in oxytetracycline biosynthesis by serving as a more efficient C-4 hydroxylase. In addition, we demonstrated that partially oxidized biosynthetic intermediates can undergo various glycosylation modifications in S. rimosus. Our results indicate that the synergistic actions of OxyE and OxyL in the double hydroxylation step prevent accumulation of shunt products during oxytetracycline biosynthesis in S. rimosus. << Less