Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline 2,6-dihydroxybenzoate Identifier CHEBI:131450 Charge -1 Formula C7H5O4 InChIKeyhelp_outline AKEUNCKRJATALU-UHFFFAOYSA-M SMILEShelp_outline C1=CC(=C(C(=C1)O)C([O-])=O)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline resorcinol Identifier CHEBI:27810 (CAS: 108-46-3) help_outline Charge 0 Formula C6H6O2 InChIKeyhelp_outline GHMLBKRAJCXXBS-UHFFFAOYSA-N SMILEShelp_outline Oc1cccc(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,006 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:49464 | RHEA:49465 | RHEA:49466 | RHEA:49467 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (gamma-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005.
Goto M., Hayashi H., Miyahara I., Hirotsu K., Yoshida M., Oikawa T.
Reversible 2,6-dihydroxybenzoate decarboxylase from Rhizobium sp. strain MTP-10005 belongs to a nonoxidative decarboxylase family. We have determined the structures of the following three forms of the enzyme: the native form, the complex with the true substrate (2,6-dihydroxybenzoate), and the com ... >> More
Reversible 2,6-dihydroxybenzoate decarboxylase from Rhizobium sp. strain MTP-10005 belongs to a nonoxidative decarboxylase family. We have determined the structures of the following three forms of the enzyme: the native form, the complex with the true substrate (2,6-dihydroxybenzoate), and the complex with 2,3-dihydroxybenzaldehyde at 1.7-, 1.9-, and 1.7-A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of one (alphabeta)8 triose-phosphate isomerase-barrel domain with three functional linkers and one C-terminal tail. The native enzyme possesses one Zn2+ ion liganded by Glu8, His10, His164, Asp287, and a water molecule at the active site center, although the enzyme has been reported to require no cofactor for its catalysis. The substrate carboxylate takes the place of the water molecule and is coordinated to the Zn2+ ion. The 2-hydroxy group of the substrate is hydrogen-bonded to Asp287, which forms a triad together with His218 and Glu221 and is assumed to be the catalytic base. On the basis of the geometrical consideration, substrate specificity is uncovered, and the catalytic mechanism is proposed for the novel Zn2+-dependent decarboxylation. << Less
-
Thermophilic, reversible gamma-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression.
Yoshiada M., Fukuhara N., Oikawa T.
We found the occurrence of thermophilic reversible gamma-resorcylate decarboxylase (gamma-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa ... >> More
We found the occurrence of thermophilic reversible gamma-resorcylate decarboxylase (gamma-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of gamma-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50 degrees C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of k(cat)/K(m) (mMu(-1) . s(-1)) for gamma-resorcylate and resorcinol at 30 degrees C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes (graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the gamma-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and gamma-RDC probably catalyzes a reaction just before the hydroxylase in it does. << Less
-
Mechanism and structure of gamma-resorcylate decarboxylase.
Sheng X., Patskovsky Y., Vladimirova A., Bonanno J.B., Almo S.C., Himo F., Raushel F.M.
γ-Resorcylate decarboxylase (γ-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of γ-resorcylate and other benzoic acid derivatives under ... >> More
γ-Resorcylate decarboxylase (γ-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of γ-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by γ-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of γ-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn<sup>2+</sup> bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of γ-RSD from Rhizobium sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, γ-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to C1 of γ-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of γ-RSD from Rhizobium sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct. << Less
-
Regioselective carboxylation of 1,3-dihydroxybenzene by 2,6-dihydroxybenzoate decarboxylase of Pandoraea sp. 12B-2.
Matsui T., Yoshida T., Yoshimura T., Nagasawa T.
We found a bacterium, Pandoraea sp. 12B-2, of which whole cells catalyzed not only the decarboxylation of 2,6-dihydroxybenzoate but also the regioselective carboxylation of 1,3-dihydroxybenzene to 2,6-dihydroxybenzoate. The whole cells of Pandoraea sp. 12B-2 also catalyzed the regioselective carbo ... >> More
We found a bacterium, Pandoraea sp. 12B-2, of which whole cells catalyzed not only the decarboxylation of 2,6-dihydroxybenzoate but also the regioselective carboxylation of 1,3-dihydroxybenzene to 2,6-dihydroxybenzoate. The whole cells of Pandoraea sp. 12B-2 also catalyzed the regioselective carboxylation of phenol and 1,2-dihydroxybenzene to 4-hydroxybenzoate and 2,3-dihydroxybenzoate, respectively. The molar conversion ratio of the carboxylation reaction depended on the concentration of KHCO(3) in the reaction mixture. Only 5 or 48 % of 1,3-dihydroxybenzene added was converted into 2,6-dihydroxybenzoate in the presence of 0.1 M or 3 M KHCO(3), respectively. The addition of acetone to the reaction mixture increased the initial rate of the carboxylation reaction, but the final molar conversion yield reached almost the same value. When the efficient production of 2,6-dihydroxybenzoate was optimized using the whole cells of Pandoraea sp. 12B-2, the productivity of 2,6-dihydroxybenzoate topped out at 1.43 M, which was the highest value so far reported. No formation of any other products was observed after the carboxylation reaction. << Less
Appl Microbiol Biotechnol 73:95-102(2006) [PubMed] [EuropePMC]
-
Gamma-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1.
Kasai D., Araki N., Motoi K., Yoshikawa S., Iino T., Imai S., Masai E., Fukuda M.
The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type ... >> More
The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type regulator, a major facilitator superfamily transporter, and a putative hydrolase, respectively. The tsdA gene conferred GRA decarboxylase activity on Escherichia coli. Purified TsdB oxidized NADH in the presence of resorcinol, suggesting that tsdB encodes a unique NADH-specific single-component resorcinol 4-hydroxylase. Mutations in either tsdA or tsdB resulted in growth deficiency on GRA. The tsdC and tsdD genes conferred hydroxyquinol 1,2-dioxygenase and maleylacetate reductase activities, respectively, on E. coli. Inactivation of tsdT significantly retarded the growth of RHA1 on GRA. The growth retardation was partially suppressed under acidic conditions, suggesting the involvement of tsdT in GRA uptake. Reverse transcription-PCR analysis revealed that the tsd genes constitute three transcriptional units, the tsdBADC and tsdTX operons and tsdR. Transcription of the tsdBADC and tsdTX operons was induced during growth on GRA. Inactivation of tsdR derepressed transcription of the tsdBADC and tsdTX operons in the absence of GRA, suggesting that tsd gene transcription is negatively regulated by the tsdR-encoded regulator. Binding of TsdR to the tsdR-tsdB and tsdT-tsdR intergenic regions was inhibited by the addition of GRA, indicating that GRA interacts with TsdR as an effector molecule. << Less
Appl. Environ. Microbiol. 81:7656-7665(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Reversible and nonoxidative gamma-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter.
Ishii Y., Narimatsu Y., Iwasaki Y., Arai N., Kino K., Kirimura K.
We found a gamma-resorcylic acid (gamma-RA, 2,6-dihydroxybenzoic acid) decarboxylase, as a novel enzyme applicable to carboxylation of resorcinol (RE, 1,3-dihydroxybenzene) to form gamma-RA, in a bacterial strain Rhizobium radiobacter WU-0108 isolated through the screening of gamma-RA degrading mi ... >> More
We found a gamma-resorcylic acid (gamma-RA, 2,6-dihydroxybenzoic acid) decarboxylase, as a novel enzyme applicable to carboxylation of resorcinol (RE, 1,3-dihydroxybenzene) to form gamma-RA, in a bacterial strain Rhizobium radiobacter WU-0108 isolated through the screening of gamma-RA degrading microorganisms. The activities for carboxylation of RE and decarboxylation of gamma-RA were detected in the cell-free extracts of R. radiobacter WU-0108 grown aerobically with gamma-RA. The enzyme, gamma-RA decarboxylase, was purified to homogeneity on SDS-PAGE through the steps of one ion-exchange chromatography and two kinds of hydrophobic chromatography. The molecular weight of the enzyme was estimated to be 130 kDa by gel-filtration, and that of the subunit was determined to be 34 kDa by SDS-PAGE, suggesting that the enzyme is a homotetrameric structure. The enzyme catalyzed the decarboxylation of gamma-RA, but not alpha-RA or beta-RA. Without addition of any cofactors, the enzyme catalyzed the regio-selective carboxylation of RE to form gamma-RA, without formation of alpha-RA and beta-RA, and of catechol to 2,3-dihydroxybenzoic acid. In the presence of oxygen, this gamma-RA decarboxylase showed no decrease in both of the activities as for decarboxylation of gamma-RA and carboxylation of RE, different from other decarboxylases reported so far. The gene, rdc, encoding the gamma-RA decarboxylase was cloned into Escherichia coli, sequenced, and subjected to over-expression. The deduced amino acid sequence of the rdc gene consists of 327 amino acid residues corresponding to 34 kDa protein, and shows 42% and 30% identity to those of a 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger and a 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis SYK-6. A site-directed mutagenesis study revealed the two histidine residues at positions of 164 and 218 in Rdc to be essential for the catalytic activities of decarboxylation of gamma-RA and carboxylation of RE. << Less
Biochem. Biophys. Res. Commun. 324:611-620(2004) [PubMed] [EuropePMC]