Reaction participants Show >> << Hide
- Name help_outline N-acetyl-D-glucosamine Identifier CHEBI:506227 (Beilstein: 1913592; CAS: 7512-17-6) help_outline Charge 0 Formula C8H15NO6 InChIKeyhelp_outline OVRNDRQMDRJTHS-RTRLPJTCSA-N SMILEShelp_outline CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Nπ-phospho-L-histidyl-[protein]
Identifier
RHEA-COMP:9746
Reactive part
help_outline
- Name help_outline Nπ-phospho-L-histidine residue Identifier CHEBI:64837 Charge -2 Formula C6H6N3O4P SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N(C=NC1)P([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-D-glucosamine 6-phosphate Identifier CHEBI:57513 (Beilstein: 5355763) help_outline Charge -2 Formula C8H14NO9P InChIKeyhelp_outline BRGMHAYQAZFZDJ-RTRLPJTCSA-L SMILEShelp_outline CC(=O)N[C@H]1C(O)O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-histidyl-[protein]
Identifier
RHEA-COMP:9745
Reactive part
help_outline
- Name help_outline L-histidine residue Identifier CHEBI:29979 Charge 0 Formula C6H7N3O SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N=CNC1 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:49240 | RHEA:49241 | RHEA:49242 | RHEA:49243 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Sequence of cloned enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:N-acetylglucosamine phosphotransferase system of Escherichia coli.
Peri K.G., Waygood E.B.
In Escherichia coli, N-acetylglucosamine (nag) metabolism is joined to glycolysis via three specific enzymes that are the products of the nag operon. The three genes of the operon, nagA, nagB, and nagE, were found to be carried by a colicin plasmid, pLC5-21, from a genomic library of E. coli [Clar ... >> More
In Escherichia coli, N-acetylglucosamine (nag) metabolism is joined to glycolysis via three specific enzymes that are the products of the nag operon. The three genes of the operon, nagA, nagB, and nagE, were found to be carried by a colicin plasmid, pLC5-21, from a genomic library of E. coli [Clarke, L., & Carbon, J. (1976) Cell (Cambridge, Mass.) 9,91-99]. The nagE gene that codes for enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was sequenced. The nagE sequence is preceded by a catabolite gene activator protein binding site and ends in a putative rho-independent termination site. The amino acid sequence determined from this DNA sequence shows 44% homology to enzymes IIglucose and IIIglucose of the PTS. Enzyme IIN-acetylglucosamine, which has 648 amino acids and a molecular weight of 68,356, contains a histidine at residue 569 which is homologous to the active site of IIIglc. Sequence homologies with enzymes IIglucose, II beta-glucoside, and IIsucrose indicate that residues His-190, His-213, and His-295 of enzyme IInag are also conserved and that His-190 is probably the second active site histidine. Other sequence homologies among these enzymes II suggest that they contain several sequence transpositions. Preliminary models of the enzymes II are proposed. << Less
-
The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
White R.J.
The properties of an N-acetyl-d-glucosamine-transport system have been studied by following the intracellular accumulation of methyl 2-acetamido-2-deoxy-alpha-d-[1-(14)C]glucoside by Escherichia coli. The same analogue was used to assay phosphoenolpyruvate phosphotransferase activity of toluene-tr ... >> More
The properties of an N-acetyl-d-glucosamine-transport system have been studied by following the intracellular accumulation of methyl 2-acetamido-2-deoxy-alpha-d-[1-(14)C]glucoside by Escherichia coli. The same analogue was used to assay phosphoenolpyruvate phosphotransferase activity of toluene-treated cells. Transport and phosphorylation are induced by growth on d-glucosamine or N-acetyl-d-glucosamine. Mutants resistant to N-iodoacetyl-d-glucosamine are defective in the uptake and phosphorylation of the labelled glycoside. << Less
-
An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli.
Plumbridge J.
A set of enzymes dedicated to recycling of the amino sugar components of peptidoglycan has previously been identified in Escherichia coli. The complete pathway includes the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase, of the catabolic pathway for use of N-acetylgluc ... >> More
A set of enzymes dedicated to recycling of the amino sugar components of peptidoglycan has previously been identified in Escherichia coli. The complete pathway includes the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase, of the catabolic pathway for use of N-acetylglucosamine (GlcNAc). Mutations in nagA result in accumulation of millimolar concentrations of GlcNAc6P, presumably by preventing peptidoglycan recycling. Mutations in the genes encoding the key enzymes upstream of nagA in the dedicated recycling pathway (ampG, nagZ, nagK, murQ, and anmK), which were expected to interrupt the recycling process, reduced but did not eliminate accumulation of GlcNAc6P. A mutation in the nagE gene of the GlcNAc phosphotransferase system (PTS) was found to reduce by 50% the amount of GlcNAc6P which accumulated in a nagA strain and, together with mutations in the dedicated recycling pathway, eliminated all the GlcNAc6P accumulation. This shows that the nagE-encoded PTS transporter makes an important contribution to the recycling of peptidoglycan. The manXYZ-encoded PTS transporter makes a minor contribution to the formation of cytoplasmic GlcNAc6P but appears to have a more important role in secretion of GlcNAc and/or GlcNAc6P from the cytoplasm. << Less
-
New translocations in chronic granulocytic leukaemia: t(X;22)(p22;q11) and t(15;22)(q26;q11).
Hossfeld D.K., Kohler S.
Two cases of Ph1-positive chronic granulocytic leukaemia with hitherto undescribed translocations are presented. In case 1 the deleted part of chromosome number 22q-was translocated to the short arm of the X chromosome, t(X;22)(p22;q11). Pronounced basophilia, trisomy 19 in the majority of metapha ... >> More
Two cases of Ph1-positive chronic granulocytic leukaemia with hitherto undescribed translocations are presented. In case 1 the deleted part of chromosome number 22q-was translocated to the short arm of the X chromosome, t(X;22)(p22;q11). Pronounced basophilia, trisomy 19 in the majority of metaphases, and a partial cytogenetic normalization of the bone marrow during busulphan induced remission were additional remarkable features of this case. In case 2 a translocation t(15;22)(q26;q11) was found. In this case the disease was characterized by an increase of unusually small megakaryocytes, thrombocytosis, and an accelerated course. << Less