Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline dTDP-4-amino-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranose Identifier CHEBI:90945 Charge -1 Formula C16H26N3O12P2 InChIKeyhelp_outline QBCDCCNQCPTNSU-GSZZWUTPSA-M SMILEShelp_outline [C@@H]1(N2C(NC(=O)C(=C2)C)=O)O[C@H](COP(OP(O[C@H]3O[C@@H]([C@H](CC3)[NH3+])C)(=O)[O-])(=O)[O-])[C@H](C1)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-α-D-forosamine Identifier CHEBI:90947 Charge -1 Formula C18H30N3O12P2 InChIKeyhelp_outline XZDZLDKUTVVABQ-HIFUNWJGSA-M SMILEShelp_outline [C@@H]1(N2C(NC(=O)C(=C2)C)=O)O[C@H](COP(OP(O[C@H]3O[C@@H]([C@H](CC3)[NH+](C)C)C)(=O)[O-])(=O)[O-])[C@H](C1)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:49148 | RHEA:49149 | RHEA:49150 | RHEA:49151 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa.
Hong L., Zhao Z., Melancon C.E. III, Zhang H., Liu H.W.
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S ... >> More
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S) from the spinosyn gene cluster thought to be involved in the conversion of TDP-4-keto-6-deoxy-D-glucose to TDP-D-forosamine were cloned and heterologously expressed, and the corresponding proteins were purified and their activities examined in vitro. Previous work demonstrated that SpnQ functions as a pyridoxamine 5'-monophosphate (PMP)-dependent 3-dehydrase which, in the presence of the cellular reductase pairs ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase, catalyzes C-3 deoxygenation of TDP-4-keto-2,6-dideoxy-D-glucose. It was also established that SpnR functions as a transaminase which converts the SpnQ product, TDP-4-keto-2,3,6-trideoxy-D-glucose, to TDP-4-amino-2,3,4,6-tetradeoxy-D-glucose. The results presented here provide a full account of the characterization of SpnR and SpnQ and reveal that SpnO and SpnN functions as a 2,3-dehydrase and a 3-ketoreductase, respectively. These two enzymes act sequentially to catalyze C-2 deoxygenation of TDP-4-keto-6-deoxy-D-glucose to form the SpnQ substrate, TDP-4-keto-2,6-dideoxy-D-glucose. Evidence has also been obtained to show that SpnS functions as the 4-dimethyltransferase that converts the SpnR product to TDP-D-forosamine. Thus, the biochemical functions of the five enzymes involved in TDP-D-forosamine formation have now been fully elucidated. The steady-state kinetic parameters for the SpnQ-catalyzed reaction have been determined, and the substrate specificities of SpnQ and SpnR have been explored. The implications of this work for natural product glycodiversification and comparative mechanistic analysis of SpnQ and related NDP-sugar 3-dehydrases E1 and ColD are discussed. << Less
J. Am. Chem. Soc. 130:4954-4967(2008) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
Comments
Multiple reaction: RHEA:49152 and RHEA:49156