Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline dTDP-4-dehydro-2,6-dideoxy-α-D-glucose Identifier CHEBI:84537 Charge -2 Formula C16H22N2O14P2 InChIKeyhelp_outline AONILRCSLAIOQE-LREJFELKSA-L SMILEShelp_outline C[C@H]1O[C@@H](C[C@@H](O)C1=O)OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H](C[C@@H]1O)n1cc(C)c(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10001
Reactive part
help_outline
- Name help_outline [2Fe-2S]1+ Identifier CHEBI:33738 Charge 1 Formula Fe2S2 InChIKeyhelp_outline MAGIRAZQQVQNKP-UHFFFAOYSA-N SMILEShelp_outline S1[Fe]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-4-dehydro-2,3,6-trideoxy-α-D-hexopyranose Identifier CHEBI:90944 Charge -2 Formula C16H22N2O13P2 InChIKeyhelp_outline YINKRXMSCURQIS-RHZHCTOVSA-L SMILEShelp_outline [C@@H]1(N2C(NC(=O)C(=C2)C)=O)O[C@H](COP(OP(O[C@H]3O[C@@H](C(CC3)=O)C)(=O)[O-])(=O)[O-])[C@H](C1)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [2Fe-2S]-[ferredoxin]
Identifier
RHEA-COMP:10000
Reactive part
help_outline
- Name help_outline [2Fe-2S]2+ Identifier CHEBI:33737 Charge 2 Formula Fe2S2 InChIKeyhelp_outline XSOVBBGAMBLACL-UHFFFAOYSA-N SMILEShelp_outline S1[Fe+]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:49140 | RHEA:49141 | RHEA:49142 | RHEA:49143 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa.
Hong L., Zhao Z., Melancon C.E. III, Zhang H., Liu H.W.
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S ... >> More
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S) from the spinosyn gene cluster thought to be involved in the conversion of TDP-4-keto-6-deoxy-D-glucose to TDP-D-forosamine were cloned and heterologously expressed, and the corresponding proteins were purified and their activities examined in vitro. Previous work demonstrated that SpnQ functions as a pyridoxamine 5'-monophosphate (PMP)-dependent 3-dehydrase which, in the presence of the cellular reductase pairs ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase, catalyzes C-3 deoxygenation of TDP-4-keto-2,6-dideoxy-D-glucose. It was also established that SpnR functions as a transaminase which converts the SpnQ product, TDP-4-keto-2,3,6-trideoxy-D-glucose, to TDP-4-amino-2,3,4,6-tetradeoxy-D-glucose. The results presented here provide a full account of the characterization of SpnR and SpnQ and reveal that SpnO and SpnN functions as a 2,3-dehydrase and a 3-ketoreductase, respectively. These two enzymes act sequentially to catalyze C-2 deoxygenation of TDP-4-keto-6-deoxy-D-glucose to form the SpnQ substrate, TDP-4-keto-2,6-dideoxy-D-glucose. Evidence has also been obtained to show that SpnS functions as the 4-dimethyltransferase that converts the SpnR product to TDP-D-forosamine. Thus, the biochemical functions of the five enzymes involved in TDP-D-forosamine formation have now been fully elucidated. The steady-state kinetic parameters for the SpnQ-catalyzed reaction have been determined, and the substrate specificities of SpnQ and SpnR have been explored. The implications of this work for natural product glycodiversification and comparative mechanistic analysis of SpnQ and related NDP-sugar 3-dehydrases E1 and ColD are discussed. << Less
J. Am. Chem. Soc. 130:4954-4967(2008) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Characterization of SpnQ from the spinosyn biosynthetic pathway of Saccharopolyspora spinosa: mechanistic and evolutionary implications for C-3 deoxygenation in deoxysugar biosynthesis.
Hong L., Zhao Z., Liu H.W.
The C-3 deoxygenation step in the biosynthesis of d-forosamine (4-N,N-dimethylamino-2,3,4,6-tetradeoxy-d-threo-hexopyranose), a constituent of spinosyn produced by Saccharopolyspora spinosa, was investigated. The spnQ gene, proposed to encode a TDP-4-keto-2,6-dideoxy-d-glucose 3-dehydratase was cl ... >> More
The C-3 deoxygenation step in the biosynthesis of d-forosamine (4-N,N-dimethylamino-2,3,4,6-tetradeoxy-d-threo-hexopyranose), a constituent of spinosyn produced by Saccharopolyspora spinosa, was investigated. The spnQ gene, proposed to encode a TDP-4-keto-2,6-dideoxy-d-glucose 3-dehydratase was cloned and overexpressed in E. coli. Characterization of the purified enzyme established that it is a PMP and iron-sulfur containing enzyme which catalyzes the C-3 deoxygenation in a reductase-dependent manner similar to that of the previously well characterized hexose 3-dehydrase E1 from Yersinia pseudotuberculosis. However, unlike E1, which has evolved to work with a specific reductase partner present in its gene cluster, SpnQ lacks a specific reductase, and works efficiently with general cellular reductases ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase. SpnQ also catalyzes C-4 transamination in the absence of an electron transfer intermediary and in the presence of PLP and l-glutamate. Under the same conditions, both E1 and the related hexose 3-dehydrase, ColD, catalyze C-3 deoxygenation. Thus, SpnQ possesses important features which distinguish it from other well studied homologues, suggesting unique evolutionary pathways for each of the three hexose 3-dehydrases studied thus far. << Less
J Am Chem Soc 128:14262-14263(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.