Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 5-methyl-phenazine-1-carboxylate Identifier CHEBI:62221 Charge 0 Formula C14H10N2O2 InChIKeyhelp_outline WBQUROCKWAJPFB-UHFFFAOYSA-N SMILEShelp_outline C[n+]1c2ccccc2nc2c(cccc12)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyocyanin Identifier CHEBI:62220 Charge 1 Formula C13H11N2O InChIKeyhelp_outline YNCMLFHHXWETLD-UHFFFAOYSA-O SMILEShelp_outline C[n+]1c2ccccc2nc2c(O)cccc12 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48976 | RHEA:48977 | RHEA:48978 | RHEA:48979 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa.
Parsons J.F., Greenhagen B.T., Shi K., Calabrese K., Robinson H., Ladner J.E.
Pyocyanin is a biologically active phenazine produced by the human pathogen Pseudomonas aeruginosa. It is thought to endow P. aeruginosa with a competitive growth advantage in colonized tissue and is also thought to be a virulence factor in diseases such as cystic fibrosis and AIDS where patients ... >> More
Pyocyanin is a biologically active phenazine produced by the human pathogen Pseudomonas aeruginosa. It is thought to endow P. aeruginosa with a competitive growth advantage in colonized tissue and is also thought to be a virulence factor in diseases such as cystic fibrosis and AIDS where patients are commonly infected by pathogenic Pseudomonads due to their immunocompromised state. Pyocyanin is also a chemically interesting compound due to its unusual oxidation-reduction activity. Phenazine-1-carboxylic acid, the precursor to the bioactive phenazines, is synthesized from chorismic acid by enzymes encoded in a seven-gene cistron in P. aeruginosa and in other Pseudomonads. Phenzine-1-carboxylic acid is believed to be converted to pyocyanin by the sequential actions of the putative S-adenosylmethionine-dependent N-methyltransferase PhzM and the putative flavin-dependent hydroxylase PhzS. Here we report the 1.8 A crystal structure of PhzM determined by single anomalous dispersion. Unlike many methyltransferases, PhzM is a dimer in solution. The 36 kDa PhzM polypeptide folds into three domains. The C-terminal domain exhibits the alpha/beta-hydrolase fold typical of small molecule methyltransferases. Two smaller N-terminal domains form much of the dimer interface. Structural alignments with known methyltransferases show that PhzM is most similar to the plant O-methyltransferases that are characterized by an unusual intertwined dimer interface. The structure of PhzM contains no ligands, and the active site is open and solvent-exposed when compared to structures of similar enzymes. In vitro experiments using purified PhzM alone demonstrate that it has little or no ability to methylate phenzine-1-carboxylic acid. However, when the putative hydroxylase PhzS is included, pyocyanin is readily produced. This observation suggests that a mechanism has evolved in P. aeruginosa that ensures efficient production of pyocyanin via the prevention of the formation and release of an unstable and potentially deleterious intermediate. << Less
Biochemistry 46:1821-1828(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.
Mavrodi D.V., Bonsall R.F., Delaney S.M., Soule M.J., Phillips G., Thomashow L.S.
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studie ... >> More
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide. << Less
J. Bacteriol. 183:6454-6465(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Crystal structure of the pyocyanin biosynthetic protein PhzS.
Greenhagen B.T., Shi K., Robinson H., Gamage S., Bera A.K., Ladner J.E., Parsons J.F.
The human pathogen Pseudomonas aeruginosa produces pyocyanin, a blue-pigmented phenazine derivative, which is known to play a role in virulence. Pyocyanin is produced from chorismic acid via the phenazine pathway, nine proteins encoded by a gene cluster. Phenazine-1-carboxylic acid, the initial ph ... >> More
The human pathogen Pseudomonas aeruginosa produces pyocyanin, a blue-pigmented phenazine derivative, which is known to play a role in virulence. Pyocyanin is produced from chorismic acid via the phenazine pathway, nine proteins encoded by a gene cluster. Phenazine-1-carboxylic acid, the initial phenazine formed, is converted to pyocyanin in two steps that are catalyzed by the enzymes PhzM and PhzS. PhzM is an adenosylmethionine dependent methyltransferase, and PhzS is a flavin dependent hydroxylase. It has been shown that PhzM is only active in the physical presence of PhzS, suggesting that a protein-protein interaction is involved in pyocyanin formation. Such a complex would prevent the release of 5-methyl-phenazine-1-carboxylate, the putative intermediate, and an apparently unstable compound. Here, we describe the three-dimensional structure of PhzS, solved by single anomalous dispersion, at a resolution of 2.4 A. The structure reveals that PhzS is a member of the family of aromatic hydroxylases characterized by p-hydroxybenzoate hydroxylase. The flavin cofactor of PhzS is in the solvent exposed out orientation typically seen in unliganded aromatic hydroxylases. The PhzS flavin, however, appears to be held in a strained conformation by a combination of stacking interactions and hydrogen bonds. The structure suggests that access to the active site is gained via a tunnel on the opposite side of the protein from where the flavin is exposed. The C-terminal 23 residues are disordered as no electron density is present for these atoms. The probable location of the C-terminus, near the substrate access tunnel, suggests that it may be involved in substrate binding as has been shown for another structural homologue, RebC. This region also may be an element of a PhzM-PhzS interface. Aromatic hydroxylases have been shown to catalyze electrophilic substitution reactions on activated substrates. The putative PhzS substrate, however, is electron deficient and unlikely to act as a nucleophile, suggesting that PhzS may use a different mechanism than its structural relatives. << Less
Biochemistry 47:5281-5289(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.