Reaction participants Show >> << Hide
- Name help_outline phosphite Identifier CHEBI:36361 (CAS: 10294-56-1) help_outline Charge 0 Formula H3O3P InChIKeyhelp_outline OJMIONKXNSYLSR-UHFFFAOYSA-N SMILEShelp_outline [H]OP(O[H])O[H] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48972 | RHEA:48973 | RHEA:48974 | RHEA:48975 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
White A.K., Metcalf W.W.
DNA sequencing and analysis of two distinct C-P lyase operons in Pseudomonas stutzeri WM88 were completed. The htxABCDEFGHIJKLMN operon encodes a hypophosphite-2-oxoglutarate dioxygenase (HtxA), whereas the predicted amino acid sequences of HtxB to HtxN are each homologous to the components of the ... >> More
DNA sequencing and analysis of two distinct C-P lyase operons in Pseudomonas stutzeri WM88 were completed. The htxABCDEFGHIJKLMN operon encodes a hypophosphite-2-oxoglutarate dioxygenase (HtxA), whereas the predicted amino acid sequences of HtxB to HtxN are each homologous to the components of the Escherichia coli phn operon, which encodes C-P lyase, although homologs of E. coli phnF and phnO are absent. The genes in the htx operon are cotranscribed based on gene organization, and the presence of the intergenic sequences is verified by reverse transcription-PCR with total RNA. Deletion of the htx locus does not affect the ability of P. stutzeri to grow on phosphonates, indicating the presence of an additional C-P lyase pathway in this organism. To identify the genes comprising this pathway, a Deltahtx strain was mutagenized and one mutant lacking the ability to grow on methylphosphonate as the sole P source was isolated. A ca.-10.6-kbp region surrounding the transposon insertion site of this mutant was sequenced, revealing 13 open reading frames, designated phnCDEFGHIJKLMNP, which were homologous to the E. coli phn genes. Deletion of both the htx and phn operons of P. stutzeri abolishes all growth on methylphosphonate and aminoethylphosphonate. Both operons individually support growth on methylphosphonate; however, the phn operon supports growth on aminoethylphosphonate and phosphite, as well. The substrate ranges of both C-P lyases are limited, as growth on other phosphonate compounds, including glyphosate and phenylphosphonate, was not observed. << Less
-
Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
Metcalf W.W., Wolfe R.S.
The first molecular and genetic characterization of a biochemical pathway for oxidation of the reduced phosphorus (P) compounds phosphite and hypophosphite is reported. The pathway was identified in Pseudomonas stutzeri WM88, which was chosen for detailed studies from a group of organisms isolated ... >> More
The first molecular and genetic characterization of a biochemical pathway for oxidation of the reduced phosphorus (P) compounds phosphite and hypophosphite is reported. The pathway was identified in Pseudomonas stutzeri WM88, which was chosen for detailed studies from a group of organisms isolated based on their ability to oxidize hypophosphite (+1 valence) and phosphite (+3 valence) to phosphate (+5 valence). The genes required for oxidation of both compounds by P. stutzeri WM88 were cloned on a single ca. 30-kbp DNA fragment by screening for expression in Escherichia coli and Pseudomonas aeruginosa. Two lines of evidence suggest that hypophosphite is oxidized to phosphate via a phosphite intermediate. First, plasmid subclones that conferred oxidation of phosphite, but not hypophosphite, upon heterologous hosts were readily obtained. All plasmid subclones that failed to confer phosphite oxidation also failed to confer hypophosphite oxidation. No subclones that conferred only hypophosphite expression were obtained. Second, various deletion derivatives of the cloned genes were made in vitro and recombined onto the chromosome of P. stutzeri WM88. Two phenotypes were displayed by individual mutants. Mutants with the region encoding phosphite oxidation deleted (based upon the subcloning results) lost the ability to oxidize either phosphite or hypophosphite. Mutants with the region encoding hypophosphite oxidation deleted lost only the ability to oxidize hypophosphite. The phenotypes displayed by these mutants also demonstrate that the cloned genes are responsible for the P oxidation phenotypes displayed by the original P. stutzeri WM88 isolate. The DNA sequences of the minimal regions implicated in oxidation of each compound were determined. The region required for oxidation of phosphite to phosphate putatively encodes a binding-protein-dependent phosphite transporter, an NAD+-dependent phosphite dehydrogenase, and a transcriptional activator of the lysR family. The region required for oxidation of hypophosphite to phosphite putatively encodes a binding-protein-dependent hypophosphite transporter and an alpha-ketoglutarate-dependent hypophosphite dioxygenase. The finding of genes dedicated to oxidation of reduced P compounds provides further evidence that a redox cycle for P may be important in the metabolism of this essential, and often growth-limiting, nutrient. << Less
J. Bacteriol. 180:5547-5558(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.