Reaction participants Show >> << Hide
- Name help_outline (5Z,8Z,11Z,14Z)-eicosatetraenoate Identifier CHEBI:32395 (Beilstein: 5439048) help_outline Charge -1 Formula C20H31O2 InChIKeyhelp_outline YZXBAPSDXZZRGB-DOFZRALJSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 83 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 15-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoate Identifier CHEBI:90821 Charge -1 Formula C20H31O4 InChIKeyhelp_outline BFWYTORDSFIVKP-USWFWKISSA-M SMILEShelp_outline C(CCC(/C=C/C=C\C/C=C\C/C=C\CCCC(=O)[O-])OO)CC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48832 | RHEA:48833 | RHEA:48834 | RHEA:48835 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15S-lipoxygenase.
Kilty I., Logan A., Vickers P.J.
The lipoxygenases (LOs) are a family of nonheme iron dioxygenases that catalyse the insertion of molecular oxygen into polyunsaturated fatty acids. Five members of this gene family have been described in man, 5-LO, 12S-LO, 12R-LO, 15-LO and 15S-LO. Using partially purified recombinant 15S-LO enzym ... >> More
The lipoxygenases (LOs) are a family of nonheme iron dioxygenases that catalyse the insertion of molecular oxygen into polyunsaturated fatty acids. Five members of this gene family have been described in man, 5-LO, 12S-LO, 12R-LO, 15-LO and 15S-LO. Using partially purified recombinant 15S-LO enzyme and cells constitutively expressing this protein, we have compared the activity, substrate specificity, kinetic characteristics and regulation of this enzyme to that previously reported for 15-LO. 15S-LO has a threefold higher Km, similar Vmax and increased specificity of oxygenation for arachidonic acid, and a similar Km but decreased Vmax for linoleic acid in comparison to 15-LO. Unlike 15-LO, 15S-LO is not suicide inactivated by the products of fatty acid oxygenation. However, in common with other LOs, 15S-LO activity is regulated through calcium-dependent association of the enzyme with the membrane fraction of cells. In addition, whilst independently cloning the recently described 15S-LO, we identified a splice variant containing an in-frame 87-bp deletion corresponding to amino acids 401-429 inclusive. Modelling of the 15S-LO and subsequent studies with partially purified recombinant protein suggest that the deleted region comprises a complete alpha-helix flanking the active site of the enzyme resulting in decreased specificity of oxygenation and affinity for fatty acid substrates. Alternative splicing of 15S-LO would therefore provide a further level of regulation of fatty acid metabolism. These results demonstrate that there are substantial differences in the enzyme characteristics and regulation of the 15-LO isozymes which may reflect differing roles for the proteins in vivo. << Less
Eur. J. Biochem. 266:83-93(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Membrane-dependent Activities of Human 15-LOX-2 and Its Murine Counterpart: IMPLICATIONS FOR MURINE MODELS OF ATHEROSCLEROSIS.
Bender G., Schexnaydre E.E., Murphy R.C., Uhlson C., Newcomer M.E.
The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzym ... >> More
The enzyme encoded by the ALOX15B gene has been linked to the development of atherosclerotic plaques in humans and in a mouse model of hypercholesterolemia. In vitro, these enzymes, which share 78% sequence identity, generate distinct products from their substrate arachidonic acid: the human enzyme, a 15-S-hydroperoxy product; and the murine enzyme, an 8-S-product. We probed the activities of these enzymes with nanodiscs as membrane mimics to determine whether they can access substrate esterified in a bilayer and characterized their activities at the membrane interface. We observed that both enzymes transform phospholipid-esterified arachidonic acid to a 15-S-product. Moreover, when expressed in transfected HEK cells, both enzymes result in significant increases in the amounts of 15-hydroxyderivatives of eicosanoids detected. In addition, we show that 15-LOX-2 is distributed at the plasma membrane when the HEK293 cells are stimulated by the addition Ca(2+) ionophore and that cellular localization is dependent upon the presence of a putative membrane insertion loop. We also report that sequence differences between the human and mouse enzymes in this loop appear to confer distinct mechanisms of enzyme-membrane interaction for the homologues. << Less
J. Biol. Chem. 291:19413-19424(2016) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.