Reaction participants Show >> << Hide
-
Namehelp_outline
all-trans-retinol--[retinol-binding protein]
Identifier
RHEA-COMP:14428
Reactive part
help_outline
- Name help_outline all-trans-retinol Identifier CHEBI:17336 (Beilstein: 403040; CAS: 11103-57-4,68-26-8) help_outline Charge 0 Formula C20H30O InChIKeyhelp_outline FPIPGXGPPPQFEQ-OVSJKPMPSA-N SMILEShelp_outline C\C(=C/CO)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an L-α amino acid residue Identifier CHEBI:83228 Charge 0 Formula C2H2NOR SMILEShelp_outline [*][C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 552 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
all-trans-retinal--[retinol-binding protein]
Identifier
RHEA-COMP:14430
Reactive part
help_outline
- Name help_outline all-trans-retinal Identifier CHEBI:17898 (CAS: 116-31-4) help_outline Charge 0 Formula C20H28O InChIKeyhelp_outline NCYCYZXNIZJOKI-OVSJKPMPSA-N SMILEShelp_outline [H]C(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an L-α amino acid residue Identifier CHEBI:83228 Charge 0 Formula C2H2NOR SMILEShelp_outline [*][C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 552 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48488 | RHEA:48489 | RHEA:48490 | RHEA:48491 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of the hRDH-E2 gene, a novel member of the SDR family, and its increased expression in psoriatic lesion.
Matsuzaka Y., Okamoto K., Tsuji H., Mabuchi T., Ozawa A., Tamiya G., Inoko H.
To identify novel psoriasis-associated genes, we focused on several ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin in patients with psoriasis vulgaris, as assessed by microarray assay. In this paper, a full-length cDNA corresponding to one of those ... >> More
To identify novel psoriasis-associated genes, we focused on several ESTs (expressed sequence tags) whose expression was predominantly increased in the affected skin in patients with psoriasis vulgaris, as assessed by microarray assay. In this paper, a full-length cDNA corresponding to one of those ESTs (AI440266) was isolated by screening of cultured human keratinocyte cDNA libraries. This cDNA has an open reading frame of a 309-amino-acid protein, sharing significant homology to one of the short-chain alcohol dehydrogenase/reductase (SDR) families that can catalyze the first and rate-limiting step that generates retinaldehyde from retinol. So, this gene was designated as hRDH-E2 (human epidermal retinal dehydrogenase 2). The hRDH-E2 gene has a single functional copy on chromosome 8q12.1, spanning approximately 20kb with seven exons. The deduced amino acid sequence contains three motifs that are conserved in the SDR family. Qualitative RT-PCR demonstrated that the mRNA levels of hRDH-E2 were significantly elevated in the affected skin in psoriasis patients as compared to the unaffected skin in patients and the normal skin in healthy individual. These results suggest that hRDH-E2 may be involved in the pathogenesis of psoriasis through its critical role in retinol metabolism in keratinocyte proliferation. << Less
Biochem. Biophys. Res. Commun. 297:1171-1180(2002) [PubMed] [EuropePMC]
-
Biochemical characterization of human epidermal retinol dehydrogenase 2.
Lee S.-A., Belyaeva O.V., Kedishvili N.Y.
The mRNA encoding a putative human enzyme named Epidermal Retinol Dehydrogenase 2 (RDH-E2) was found to be significantly elevated in psoriatic skin [Y. Matsuzaka, K. Okamoto, H. Tsuji, T. Mabuchi, A. Ozawa, G. Tamiya, H. Inoko, Identification of the hRDH-E2 gene, a novel member of the SDR family, ... >> More
The mRNA encoding a putative human enzyme named Epidermal Retinol Dehydrogenase 2 (RDH-E2) was found to be significantly elevated in psoriatic skin [Y. Matsuzaka, K. Okamoto, H. Tsuji, T. Mabuchi, A. Ozawa, G. Tamiya, H. Inoko, Identification of the hRDH-E2 gene, a novel member of the SDR family, and its increased expression in psoriatic lesion, Biochem. Biophys. Res. Commun. 297 (2002) 1171-1180]. This finding led the authors to propose that RDH-E2 may be involved in the pathogenesis of psoriasis through its potential role in retinoic acid biosynthesis and stimulation of keratinocyte proliferation. However, enzymatic activity for RDH-E2 has never been demonstrated. RDH-E2 is a member of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins, and is most closely related to the group of SDRs comprised of both NAD(+)- and NADP(+)-dependent enzymes with activities toward retinoid and steroid substrates. In this study, we began the characterization of RDH-E2 protein in order to determine whether it might play a role in retinoic acid biosynthesis. The results of this study show that, similarly to other SDR-type retinol dehydrogenases, RDH-E2 appears to be associated with the membranes of endoplasmic reticulum. Furthermore, RDH-E2 expressed in Sf9 insect cells as a fusion to the C-terminal His(6)-tag and purified using Ni(2+)-affinity chromatography recognizes all-trans-retinol and all-trans-retinaldehyde as substrates and exhibits a strong preference for NAD(+)/NADH as cofactors. Specific activity of RDH-E2 toward all-trans-retinoids is much lower than that of other retinoid-active SDRs, such as human RoDH4 or RDH10. The preference for NAD(+) suggests that RDH-E2 is likely to function in the oxidative direction in vivo, further supporting its potential role in the oxidation of retinol to retinaldehyde for retinoic acid biosynthesis in human keratinocytes. << Less
Chem. Biol. Interact. 178:182-187(2009) [PubMed] [EuropePMC]
-
cDNA cloning and characterization of a new human microsomal NAD+-dependent dehydrogenase that oxidizes all-trans-retinol and 3alpha-hydroxysteroids.
Gough W.H., VanOoteghem S., Sint T., Kedishvili N.Y.
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarit ... >> More
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarity with rat all-trans-retinol dehydrogenases RoDH-1, RoDH-2, and RoDH-3, and mouse cis-retinol/androgen dehydrogenase (</=73% identity). The mRNA for RoDH-4 is abundant in adult liver, where it is translated into RoDH-4 protein, which is associated with microsomal membranes, as evidenced by Western blot analysis. Significant amounts of RoDH-4 message are detected in fetal liver and lung. Recombinant RoDH-4, expressed in microsomes of Sf9 insect cells using BacoluGold Baculovirus system, oxidizes all-trans-retinol and 13-cis-retinol to corresponding aldehydes and oxidizes the 3alpha-hydroxysteroids androstane-diol and androsterone to dihydrotestosterone and androstanedione, respectively. NAD+ and NADH are the preferred cofactors, with apparent Km values 250-1500 times lower than those for NADP+ and NADPH. All-trans-retinol and 13-cis-retinol inhibit RoDH-4 catalyzed oxidation of androsterone with apparent Ki values of 5.8 and 3.5 microM, respectively. All-trans-retinol bound to cellular retinol-binding protein (type I) exhibits a similar Ki value of 3.6 microM. Unliganded cellular retinol-binding protein has no effect on RoDH activity. Citral and acyclic isoprenoids also act as inhibitors of RoDH-4 activity. Ethanol is not inhibitory. Thus, we have identified and characterized a sterol/retinol-oxidizing short chain dehydrogenase/reductase that prefers NAD+ and recognizes all-trans-retinol as substrate. RoDH-4 can potentially contribute to the biosynthesis of two powerful modulators of gene expression: retinoic acid from retinol and dihydrotestosterone from 3alpha-androstane-diol. << Less
J. Biol. Chem. 273:19778-19785(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Retinol and alcohol dehydrogenases in retina and liver.
Koen A.L., Shaw C.R.