Enzymes
UniProtKB help_outline | 5,812 proteins |
Reaction participants Show >> << Hide
-
Namehelp_outline
N6-D-ribulosyl-L-lysyl-[protein]
Identifier
RHEA-COMP:12103
Reactive part
help_outline
- Name help_outline N6-D-ribulosyl-L-lysine residue Identifier CHEBI:90418 Charge 1 Formula C11H21N2O5 SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH2+]CC([C@@H]([C@@H](CO)O)O)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-(3-O-phospho-D-ribulosyl)-L-lysyl-[protein]
Identifier
RHEA-COMP:12104
Reactive part
help_outline
- Name help_outline N6-(3-O-phospho-D-ribulosyl)-L-lysine residue Identifier CHEBI:90420 Charge -1 Formula C11H20N2O8P SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH2+]CC([C@@H]([C@@H](CO)O)OP([O-])(=O)[O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48432 | RHEA:48433 | RHEA:48434 | RHEA:48435 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine.
Payne L.S., Brown P.M., Middleditch M., Baker E., Cooper G.J., Loomes K.M.
The modification of proteins by reducing sugars through the process of non-enzymatic glycation is one of the principal mechanisms by which hyperglycaemia may precipitate the development of diabetic complications. Fn3K (fructosamine 3-kinase) and Fn3KRP (Fn3K-related protein) are two recently disco ... >> More
The modification of proteins by reducing sugars through the process of non-enzymatic glycation is one of the principal mechanisms by which hyperglycaemia may precipitate the development of diabetic complications. Fn3K (fructosamine 3-kinase) and Fn3KRP (Fn3K-related protein) are two recently discovered enzymes that may play roles in metabolizing early glycation products. However, although the activity of these enzymes towards various glycated substrates has been established, very little is known about their structure-function relationships or their respective mechanisms of action. Furthermore, their only structural similarities noted to date with members of other kinase families has been with the bacterial aminoglycoside kinases. In the present study, we employed affinity labelling with the ATP analogue FSBA {5'-p-[(fluorosulfonyl)benzoyl]adenosine} to probe the active-site topology of Fn3KRP as an example of this enigmatic family of kinases. FSBA was found to modify Fn3KRP at five distinct sites; four of these were predicted to be localized in close proximity to its ATP-binding site, based on alignments with the aminoglycoside kinase APH(3')-IIIa, and examination of its published tertiary structure. The results of the present studies provide evidence that Fn3KRP possesses an ATP-binding domain that is structurally related to that of both the aminoglycoside kinases and eukaryotic protein kinases. << Less
Biochem. J. 416:281-288(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A mammalian protein homologous to fructosamine-3-kinase is a ketosamine-3-kinase acting on psicosamines and ribulosamines but not on fructosamines.
Collard F., Delpierre G., Stroobant V., Matthijs G., Van Schaftingen E.
Fructosamine-3-kinase (FN3K) is an enzyme that appears to be responsible for the removal of fructosamines from proteins. In this study, we report the sequence of human and mouse cDNAs encoding proteins sharing 65% sequence identity with FN3K. The genes encoding FN3K and FN3K-related protein (FN3K- ... >> More
Fructosamine-3-kinase (FN3K) is an enzyme that appears to be responsible for the removal of fructosamines from proteins. In this study, we report the sequence of human and mouse cDNAs encoding proteins sharing 65% sequence identity with FN3K. The genes encoding FN3K and FN3K-related protein (FN3K-RP) are present next to each other on human chromosome 17q25, and they both have a similar 6-exon structure. Northern blots of mouse tissues RNAs indicate a high level of expression of both genes in bone marrow, brain, kidneys, and spleen. Human FN3K-RP was transfected in human embryonic kidney (HEK) cells, and the expressed protein was partially purified by chromatography on Blue Sepharose. Unlike FN3K, FN3K-RP did not phosphorylate fructoselysine, 1-deoxy-1-morpholino-fructose, or lysozyme glycated with glucose. In a more systematic screening for potential substrates for FN3K-RP, we found, however, that both enzymes phosphorylated ketosamines with a D-configuration in C3 (psicoselysine, 1-deoxy-1-morpholino-psicose, 1-deoxy-1-morpholino-ribulose, lysozyme glycated with allose-the C3 epimer of glucose, or with ribose). Tandem mass spectrometry and nuclear magnetic resonance analysis of the product of phosphorylation of 1-deoxy-1-morpholino-psicose by FN3K-RP indicated that this enzyme phosphorylates the third carbon of the sugar moiety. These results indicate that FN3K-RP is a ketosamine-3-kinase (ketosamine-3-kinase 2). This enzyme presumably plays a role in freeing proteins from ribulosamines or psicosamines, which might arise in a several step process, from the reaction of amines with glucose and/or glycolytic intermediates. This role is shared by fructosamine-3-kinase (ketosamine-3-kinase 1), which has, in addition, the unique capacity to phosphorylate fructosamines. << Less
Diabetes 52:2888-2895(2003) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Plant ribulosamine/erythrulosamine 3-kinase, a putative protein-repair enzyme.
Fortpied J., Gemayel R., Stroobant V., van Schaftingen E.
FN3K (fructosamine 3-kinase) is a mammalian enzyme that catalyses the phosphorylation of fructosamines, which thereby becomes unstable and detaches from proteins. The homologous mammalian enzyme, FN3K-RP (FN3K-related protein), does not phosphorylate fructosamines but ribulosamines, which are prob ... >> More
FN3K (fructosamine 3-kinase) is a mammalian enzyme that catalyses the phosphorylation of fructosamines, which thereby becomes unstable and detaches from proteins. The homologous mammalian enzyme, FN3K-RP (FN3K-related protein), does not phosphorylate fructosamines but ribulosamines, which are probably formed through a spontaneous reaction of amines with ribose 5-phosphate, an intermediate of the pentose-phosphate pathway and the Calvin cycle. We show in the present study that spinach leaf extracts display a substantial ribulosamine kinase activity (approx. 700 times higher than the specific activity of FN3K in erythrocytes). The ribulosamine kinase was purified approx. 400 times and shown to phosphorylate ribulose-epsilon-lysine, protein-bound ribulosamines and also, with higher affinity, erythrulose-epsilon-lysine and protein-bound erythrulosamines. Evidence is presented for the fact that the third carbon of the sugar portion is phosphorylated by this enzyme and that this leads to the formation of unstable compounds decomposing with half-lives of approx. 30 min at 37 degrees C (ribulosamine 3-phosphates) and 5 min at 30 degrees C (erythrulosamine 3-phosphates). This decomposition results in the formation of a 2-oxo-3-deoxyaldose and inorganic phosphate, with regeneration of the free amino group. The Arabidopsis thaliana homologue of FN3K/FN3K-RP was overexpressed in Escherichia coli and shown to have properties similar to those of the enzyme purified from spinach leaves. These results indicate that the plant FN3K/FN3K-RP homologue, which appears to be targeted to the chloroplast in many species, is a ribulosamine/erythrulosamine 3-kinase. This enzyme may participate in a protein deglycation process removing Amadori products derived from ribose 5-phosphate and erythrose 4-phosphate, two Calvin cycle intermediates that are potent glycating agents. << Less
Biochem. J. 388:795-802(2005) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.