Reaction participants Show >> << Hide
- Name help_outline a medium chain fatty acid Identifier CHEBI:59558 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 104 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a medium-chain fatty acyl-CoA Identifier CHEBI:90546 Charge -4 Formula C22H31N7O17P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)*)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 191 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48340 | RHEA:48341 | RHEA:48342 | RHEA:48343 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Genetics of alkane oxidation by Pseudomonas oleovorans.
van Beilen J.B., Wubbolts M.G., Witholt B.
Many Pseudomonads are able to use linear alkanes as sole carbon and energy source. The genetics and enzymology of alkane metabolism have been investigated in depth for Pseudomonas oleovorans, which is able to oxidize C5-C12 n-alkanes by virtue of two gene regions, localized on the OCT-plasmid. The ... >> More
Many Pseudomonads are able to use linear alkanes as sole carbon and energy source. The genetics and enzymology of alkane metabolism have been investigated in depth for Pseudomonas oleovorans, which is able to oxidize C5-C12 n-alkanes by virtue of two gene regions, localized on the OCT-plasmid. The so-called alk-genes have been cloned in pLAFR1, and were subsequent analyzed using minicell expression experiments, DNA sequencing and deletion analysis. This has led to the identification and characterization of of the alkBFGHJKL and alkST genes which encode all proteins necessary to convert alkanes to the corresponding acyl-CoA derivatives. These then enter the beta-oxidation-cycle, and can be utilized as carbon- and energy sources. Medium (C6-C12)- or long-chain (C13-C20) n-alkanes can be utilized by many strains, some of which have been partially characterized. The alkane-oxidizing enzymes used by some of these strains (e.g. two P. aeruginosa strains, a P. denitrificans strain and a marine Pseudomonas sp.) appear to be closely related to those encoded by the OCT-plasmid. << Less