Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octanoyl-CoA Identifier CHEBI:57386 Charge -4 Formula C29H46N7O17P3S InChIKeyhelp_outline KQMZYOXOBSXMII-CECATXLMSA-J SMILEShelp_outline CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10685
Reactive part
help_outline
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 170 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-octenoyl-CoA Identifier CHEBI:62242 Charge -4 Formula C29H44N7O17P3S InChIKeyhelp_outline CPSDNAXXKWVYIY-NTLMCJQISA-J SMILEShelp_outline CCCCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10686
Reactive part
help_outline
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:48180 | RHEA:48181 | RHEA:48182 | RHEA:48183 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Identification of the catalytic base in long chain acyl-CoA dehydrogenase.
Djordjevic S., Dong Y., Paschke R., Frerman F.E., Strauss A.W., Kim J.J.
We have used molecular modeling and site-directed mutagenesis to identify the catalytic residues of human long chain acyl-CoA dehydrogenase. Among the acyl-CoA dehydrogenases, a family of flavoenzymes involved in beta-oxidation of fatty acids, only the three-dimensional structure of the medium cha ... >> More
We have used molecular modeling and site-directed mutagenesis to identify the catalytic residues of human long chain acyl-CoA dehydrogenase. Among the acyl-CoA dehydrogenases, a family of flavoenzymes involved in beta-oxidation of fatty acids, only the three-dimensional structure of the medium chain fatty acid specific enzyme from pig liver has been determined (Kim, J.-J.P., Wang, M., & Paschke, R. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7523-7527). Despite the overall sequence homology, the catalytic residue (E376) of medium chain acyl-CoA dehydrogenase is not conserved in isovaleryl- and long chain acyl-CoA dehydrogenases. A molecular model of human long chain acyl-CoA dehydrogenase was derived using atomic coordinates determined by X-ray diffraction studies of the pig medium chain specific enzyme, interactive graphics, and molecular mechanics calculations. The model suggests that E261 functions as the catalytic base in the long-chain dehydrogenase. An altered dehydrogenase in which E261 was replaced by a glutamine was constructed, expressed, purified, and characterized. The mutant enzyme exhibited less than 0.02% of the wild-type activity. These data strongly suggest that E261 is the base that abstracts the alpha-proton of the acyl-CoA substrate in the catalytic pathway of this dehydrogenase. << Less
Biochemistry 33:4258-4264(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids.
Ensenauer R., He M., Willard J.M., Goetzman E.S., Corydon T.J., Vandahl B.B., Mohsen A.W., Isaya G., Vockley J.
Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is ... >> More
Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is not entirely understood. Recently, a novel ACAD (ACAD-9) of unknown function that is highly homologous to human very-long-chain acyl-CoA dehydrogenase was identified by large-scale random sequencing. To characterize its enzymatic role, we have expressed ACAD-9 in Escherichia coli, purified it, and determined its pattern of substrate utilization. The N terminus of the mature form of the enzyme was identified by in vitro mitochondrial import studies of precursor protein. A 37-amino acid leader peptide was cleaved sequentially by two mitochondrial peptidases to yield a predicted molecular mass of 65 kDa for the mature subunit. Submitochondrial fractionation studies found native ACAD-9 to be associated with the mitochondrial membrane. Gel filtration analysis indicated that, like very-long-chain acyl-CoA dehydrogenase, ACAD-9 is a dimer, in contrast to the other known ACADs, which are tetramers. Purified mature ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (C16:1-, C18:1-, C18:2-, C22:6-CoA). These results suggest a previously unrecognized role for ACAD-9 in the mitochondrial beta-oxidation of long-chain unsaturated fatty acids. Because of the substrate specificity and abundance of ACAD-9 in brain, we speculate that it may play a role in the turnover of lipid membrane unsaturated fatty acids that are essential for membrane integrity and structure. << Less
J. Biol. Chem. 280:32309-32316(2005) [PubMed] [EuropePMC]
This publication is cited by 20 other entries.
-
Medium-long-chain chimeric human Acyl-CoA dehydrogenase: medium-chain enzyme with the active center base arrangement of long-chain Acyl-CoA dehydrogenase.
Nandy A., Kieweg V., Kraeutle F.G., Vock P., Kuechler B., Bross P., Kim J.J., Rasched I., Ghisla S.
The catalytically essential glutamate residue that initiates catalysis by abstracting the substrate alpha-hydrogen as H+ is located at position 376 (mature MCADH numbering) on loop JK in medium chain acyl-CoA dehydrogenase (MCADH). In long chain acyl-CoA dehydrogenase (LCADH) and isovaleryl-CoA de ... >> More
The catalytically essential glutamate residue that initiates catalysis by abstracting the substrate alpha-hydrogen as H+ is located at position 376 (mature MCADH numbering) on loop JK in medium chain acyl-CoA dehydrogenase (MCADH). In long chain acyl-CoA dehydrogenase (LCADH) and isovaleryl-CoA dehydrogenase (IVDH), the corresponding Glu carrying out the same function is placed at position 255 on the adjacent helix G. These glutamates thus act on substrate approaching from two opposite regions at the active center. We have implemented the topology of LCADH in MCADH by carrying out the two mutations Glu376Gly and Thr255Glu. The resulting chimeric enzyme, "medium-/long" chain acyl-CoA dehydrogenase (MLCADH) has approximately 20% of the activity of MCADH and approximately 25% that of LCADH with its best substrates octanoyl-CoA and dodecanoyl-CoA, respectively. MLCADH exhibits an enhanced rate of reoxidation with oxygen, however, with a much narrower substrate chain length specificity that peaks with dodecanoyl-CoA. This is the same maximum as that of LCADH and is thus significantly shifted from that of native MCADH (hexanoyl/octanoyl-CoA). The putative, common ancestor of LCADH and IVDH has two Glu residues, one each at positions 255 and 376. The corresponding MCADH mutant, Thr255Glu (glu/glu-MCADH), is as active as MCADH with octanoyl-CoA; its activity/chain length profile is, however, much narrower. The topology of the Glu as H+ abstracting base seems an important factor in determining chain length specificity and reactivity in acyl-CoA dehydrogenases. The mechanisms underlying these effects are discussed in view of the three-dimensional structure of MLCADH, which is presented in the accompanying paper [Lee et al. (1996) Biochemistry 35, 12412-12420]. << Less
Biochemistry 35:12402-12411(1996) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification and characterization of new long chain acyl-CoA dehydrogenases.
He M., Pei Z., Mohsen A.W., Watkins P., Murdoch G., Van Veldhoven P.P., Ensenauer R., Vockley J.
Long-chain fatty acids are an important source of energy in muscle and heart where the acyl-CoA dehydrogenases (ACADs) participate in consecutive cycles of β-oxidation to generate acetyl-CoA and reducing equivalents for generating energy. However, the role of long-chain fatty acid oxidation in the ... >> More
Long-chain fatty acids are an important source of energy in muscle and heart where the acyl-CoA dehydrogenases (ACADs) participate in consecutive cycles of β-oxidation to generate acetyl-CoA and reducing equivalents for generating energy. However, the role of long-chain fatty acid oxidation in the brain and other tissues that do not rely on fat for energy is poorly understood. Here we characterize two new ACADs, ACAD10 and ACAD11, both with significant expression in human brain. ACAD11 utilizes substrates with primary carbon chain lengths between 20 and 26, with optimal activity towards C22CoA. The combination of ACAD11 with the newly characterized ACAD9 accommodates the full spectrum of long chain fatty acid substrates presented to mitochondrial β-oxidation in human cerebellum. ACAD10 has significant activity towards the branched-chain substrates R and S, 2 methyl-C15-CoA and is highly expressed in fetal but not adult brain. This pattern of expression is similar to that of LCAD, another ACAD previously shown to be involved in long branched chain fatty acid metabolism. Interestingly, the ACADs in human cerebellum were found to have restricted cellular distribution. ACAD9 was most highly expressed in the granular layer, ACAD11 in the white matter, and MCAD in the molecular layer and axons of specific neurons. This compartmentalization of ACADs in the human central nerve system suggests that β-oxidation in cerebellum participates in different functions other than generating energy, for example, the synthesis and/or degradation of unique cellular lipids and catabolism of aromatic amino acids, compounds that are vital to neuronal function. << Less
Mol. Genet. Metab. 102:418-429(2011) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family.
Rozen R., Vockley J., Zhou L., Milos R., Willard J., Fu K., Vicanek C., Low-Nang L., Torban E., Fournier B.
The acyl-CoA dehydrogenases (ACDs) are a family of mitochondrial enzymes that oxidize straight chain or branched chain acyl-CoAs in the metabolism of fatty acids or branched chain amino acids. Deficiencies in members of this gene family are important causes of human disease. A cDNA encoding the hu ... >> More
The acyl-CoA dehydrogenases (ACDs) are a family of mitochondrial enzymes that oxidize straight chain or branched chain acyl-CoAs in the metabolism of fatty acids or branched chain amino acids. Deficiencies in members of this gene family are important causes of human disease. A cDNA encoding the human precursor for a novel member (gene symbol ACADSB) of the ACD gene family has been isolated and characterized. The open reading frame of 1.3 kb encodes a precursor protein of 431 amino acids, which is processed in vitro to yield a mature protein of 399 amino acids. The cDNA has significant sequence similarity to other members of the acyl-CoA dehydrogenase family, with the greatest homology (38%) to the short chain acyl-CoA dehydrogenase. The cDNA was expressed in eukaryotic (COS) and prokaryotic (Escherichia coli) cells, producing a protein of the expected size, with activity toward the short branched chain acyl-CoA derivatives ((S)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA), as well as toward the short straight chain acyl-CoAs (butyryl-CoA and hexanoyl-CoA). << Less
Genomics 24:280-287(1994) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.