Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline dTDP-4-dehydro-6-deoxy-α-D-glucose Identifier CHEBI:57649 (Beilstein: 7737591) help_outline Charge -2 Formula C16H22N2O15P2 InChIKeyhelp_outline PSXWNITXWWECNY-UCBTUHGZSA-L SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H](C[C@@H]2O)n2cc(C)c(=O)[nH]c2=O)[C@H](O)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose Identifier CHEBI:84540 Charge -2 Formula C16H20N2O14P2 InChIKeyhelp_outline FHKRUUVTZNTHKJ-NJIBTWPXSA-L SMILEShelp_outline C[C@H]1O[C@@H](CC(=O)C1=O)OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H](C[C@@H]1O)n1cc(C)c(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47972 | RHEA:47973 | RHEA:47974 | RHEA:47975 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L-epivancosamine in chloroeremomycin biosynthesis.
Chen H., Thomas M.G., Hubbard B.K., Losey H.C., Walsh C.T., Burkart M.D.
The 2,3,6-trideoxysugar l-epivancosamine is the terminal sugar added to the aglycone scaffold in chloroeremomycin, a member of the vancomycin family of glycopeptide antibiotics. Five proteins from the chloroeremomycin biosynthetic cluster, ORF14 and ORF23 to ORF26, have been expressed heterologous ... >> More
The 2,3,6-trideoxysugar l-epivancosamine is the terminal sugar added to the aglycone scaffold in chloroeremomycin, a member of the vancomycin family of glycopeptide antibiotics. Five proteins from the chloroeremomycin biosynthetic cluster, ORF14 and ORF23 to ORF26, have been expressed heterologously in Escherichia coli and purified to near homogeneity, and each has been characterized for an enzymatic activity. These five enzymes reconstitute the complete biosynthesis of TDP-l-epivancosamine from TDP-4-keto-6-deoxy-d-glucose. This process involves C-2 deoxygenation, C-3 amination and methylation, C-5 epimerization, and C-4 ketoreduction. Intermediates and the final product of this pathway have been identified by mass spectrometry and NMR. The pathway established here represents the complete in vitro reconstitution of an unusual sugar for an important class of antibiotics and sets the groundwork for future combinatorial biosynthesis for new bioactive compounds. << Less
Proc. Natl. Acad. Sci. U.S.A. 97:11942-11947(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa.
Hong L., Zhao Z., Melancon C.E. III, Zhang H., Liu H.W.
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S ... >> More
Forosamine (4-dimethylamino)-2,3,4,6-tetradeoxy-beta-D-threo-hexopyranose) is a highly deoxygenated sugar component of several important natural products, including the potent yet environmentally benign insecticide spinosyns. To study D-forosamine biosynthesis, the five genes (spnO, N, Q, R, and S) from the spinosyn gene cluster thought to be involved in the conversion of TDP-4-keto-6-deoxy-D-glucose to TDP-D-forosamine were cloned and heterologously expressed, and the corresponding proteins were purified and their activities examined in vitro. Previous work demonstrated that SpnQ functions as a pyridoxamine 5'-monophosphate (PMP)-dependent 3-dehydrase which, in the presence of the cellular reductase pairs ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase, catalyzes C-3 deoxygenation of TDP-4-keto-2,6-dideoxy-D-glucose. It was also established that SpnR functions as a transaminase which converts the SpnQ product, TDP-4-keto-2,3,6-trideoxy-D-glucose, to TDP-4-amino-2,3,4,6-tetradeoxy-D-glucose. The results presented here provide a full account of the characterization of SpnR and SpnQ and reveal that SpnO and SpnN functions as a 2,3-dehydrase and a 3-ketoreductase, respectively. These two enzymes act sequentially to catalyze C-2 deoxygenation of TDP-4-keto-6-deoxy-D-glucose to form the SpnQ substrate, TDP-4-keto-2,6-dideoxy-D-glucose. Evidence has also been obtained to show that SpnS functions as the 4-dimethyltransferase that converts the SpnR product to TDP-D-forosamine. Thus, the biochemical functions of the five enzymes involved in TDP-D-forosamine formation have now been fully elucidated. The steady-state kinetic parameters for the SpnQ-catalyzed reaction have been determined, and the substrate specificities of SpnQ and SpnR have been explored. The implications of this work for natural product glycodiversification and comparative mechanistic analysis of SpnQ and related NDP-sugar 3-dehydrases E1 and ColD are discussed. << Less
J. Am. Chem. Soc. 130:4954-4967(2008) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
TDP-L-megosamine biosynthesis pathway elucidation and megalomicin a production in Escherichia coli.
Useglio M., Peiru S., Rodriguez E., Labadie G.R., Carney J.R., Gramajo H.
In vivo reconstitution of the TDP-l-megosamine pathway from the megalomicin gene cluster of Micromonospora megalomicea was accomplished by the heterologous expression of its biosynthetic genes in Escherichia coli. Mass spectrometric analysis of the TDP-sugar intermediates produced from operons con ... >> More
In vivo reconstitution of the TDP-l-megosamine pathway from the megalomicin gene cluster of Micromonospora megalomicea was accomplished by the heterologous expression of its biosynthetic genes in Escherichia coli. Mass spectrometric analysis of the TDP-sugar intermediates produced from operons containing different sets of genes showed that the production of TDP-l-megosamine from TDP-4-keto-6-deoxy-d-glucose requires only five biosynthetic steps, catalyzed by MegBVI, MegDII, MegDIII, MegDIV, and MegDV. Bioconversion studies demonstrated that the sugar transferase MegDI, along with the helper protein MegDVI, catalyzes the transfer of l-megosamine to either erythromycin C or erythromycin D, suggesting two possible routes for the production of megalomicin A. Analysis in vivo of the hydroxylation step by MegK indicated that erythromycin C is the intermediate of megalomicin A biosynthesis. << Less
Appl. Environ. Microbiol. 76:3869-3877(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Identification and expression of genes involved in biosynthesis of L-oleandrose and its intermediate L-olivose in the oleandomycin producer Streptomyces antibioticus.
Aguirrezabalaga I., Olano C., Allende N., Rodriguez L., Brana A.F., Mendez C., Salas J.A.
A 9.8-kb DNA region from the oleandomycin gene cluster in Streptomyces antibioticus was cloned. Sequence analysis revealed the presence of 8 open reading frames encoding different enzyme activities involved in the biosynthesis of one of the two 2, 6-deoxysugars attached to the oleandomycin aglycon ... >> More
A 9.8-kb DNA region from the oleandomycin gene cluster in Streptomyces antibioticus was cloned. Sequence analysis revealed the presence of 8 open reading frames encoding different enzyme activities involved in the biosynthesis of one of the two 2, 6-deoxysugars attached to the oleandomycin aglycone: L-oleandrose (the oleW, oleV, oleL, and oleU genes) and D-desosamine (the oleNI and oleT genes), or of both (the oleS and oleE genes). A Streptomyces albus strain harboring the oleG2 glycosyltransferase gene integrated into the chromosome was constructed. This strain was transformed with two different plasmid constructs (pOLV and pOLE) containing a set of genes proposed to be required for the biosynthesis of dTDP-L-olivose and dTDP-L-oleandrose, respectively. Incubation of these recombinant strains with the erythromycin aglycon (erythronolide B) gave rise to two new glycosylated compounds, identified as L-3-O-olivosyl- and L-3-O-oleandrosyl-erythronolide B, indicating that pOLV and pOLE encode all enzyme activities required for the biosynthesis of these two 2,6-dideoxysugars. A pathway is proposed for the biosynthesis of these two deoxysugars in S. antibioticus. << Less
Antimicrob. Agents Chemother. 44:1266-1275(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The mtmVUC genes of the mithramycin gene cluster in Streptomyces argillaceus are involved in the biosynthesis of the sugar moieties.
Gonzalez A., Remsing L.L., Lombo F., Fernandez M.J., Prado L., Brana A.F., Kunzel E., Rohr J., Mendez C., Salas J.A.
Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in non ... >> More
Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in nonproducing mutants, which were generated by insertional inactivation of these genes. The mtm V gene codes for a 2,3-dehydratase that catalyzes early and common steps in the biosynthesis of the three sugars found in mithramycin (D-olivose, D-oliose and D-mycarose); its inactivation caused the accumulation of the nonglycosylated intermediate premithramycinone. The mtmU gene codes for a 4-ketoreductase involved in D-oliose biosynthesis, and its inactivation resulted in the accumulation of premithramycinone and premithramycin A , the first glycosylated intermediate which contains a D-olivose unit. The third gene, mtmC, is involved in D-mycarose biosynthesis and codes for a C-methyltransferase. Two mutants with lesions in the mtmC gene accumulated mithramycin intermediates lacking the D-mycarose moiety but containing D-olivose units attached to C-12a in which the 4-keto group is unreduced. This suggests that mtmC could code for a second enzyme activity, probably a D-olivose 4-ketoreductase, and that the glycosyltransferase responsible for the incorporation of D-olivose (MtmGIV) shows some degree of flexibility with respect to its sugar co-substrate, since the 4-ketoanalog is also transferred. A pathway is proposed for the biosynthesis of the three sugar moieties in mithramycin. << Less
Mol Gen Genet 264:827-835(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone.
Wang L., White R.L., Vining L.C.
Eight additional genes, jadX, O, P, Q, S, T, U and V, in the jad cluster of Streptomyces venezuelae ISP5230, were located immediately downstream of jadN by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were c ... >> More
Eight additional genes, jadX, O, P, Q, S, T, U and V, in the jad cluster of Streptomyces venezuelae ISP5230, were located immediately downstream of jadN by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in Escherichia coli, inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into Streptomyces venezuelae by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated Streptomyces venezuelae mutants indicated that jadO, P, Q, S, T, U and V mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the jadQ product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the jadT product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by jadO and jadP, respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D-threo-4-hexulose. The product of jadU (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L-erythro form and the jadV product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by jadS transfers the activated sugar to jadomycin aglycone. The function of jadX is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (jadR*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences. << Less
Microbiology (Reading) 148:1091-1103(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
Multi-step reaction: RHEA:47976 and RHEA:47980