Reaction participants Show >> << Hide
- Name help_outline 3-maleylpyruvate Identifier CHEBI:16727 Charge -2 Formula C7H4O6 InChIKeyhelp_outline AZCFLHZUFANAOR-UPHRSURJSA-L SMILEShelp_outline [O-]C(=O)\C=C/C(=O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline maleate Identifier CHEBI:30780 (Beilstein: 3588415) help_outline Charge -2 Formula C4H2O4 InChIKeyhelp_outline VZCYOOQTPOCHFL-UPHRSURJSA-L SMILEShelp_outline [O-]C(=O)\C=C/C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47956 | RHEA:47957 | RHEA:47958 | RHEA:47959 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
HbzF catalyzes direct hydrolysis of maleylpyruvate in the gentisate pathway of Pseudomonas alcaligenes NCIMB 9867.
Liu K., Liu T.T., Zhou N.Y.
HbzF from Pseudomonas alcaligenes NCIMB 9867 was purified to homogeneity as a His-tagged protein and likely a dimer by SDS-PAGE and gel filtration. This protein was demonstrated to be a novel maleylpyruvate hydrolase, catalyzing direct hydrolysis of maleylpyruvate to maleate and pyruvate, and belo ... >> More
HbzF from Pseudomonas alcaligenes NCIMB 9867 was purified to homogeneity as a His-tagged protein and likely a dimer by SDS-PAGE and gel filtration. This protein was demonstrated to be a novel maleylpyruvate hydrolase, catalyzing direct hydrolysis of maleylpyruvate to maleate and pyruvate, and belongs to the fumarylacetoacetate hydrolase superfamily. This study reveals the genetic determinate for the direct maleylpyruvate hydrolysis in the gentisate pathway, complementary to the well-studied maleylpyruvate isomerization route. << Less
Appl. Environ. Microbiol. 79:1044-1047(2013) [PubMed] [EuropePMC]
-
Purification and some properties of maleylpyruvate hydrolase and fumarylpyruvate hydrolase from Pseudomonas alcaligenes.
Bayly R.C., Chapman P.J., Dagley S., Di Berardino D.
Hydrolysis of the gentisate ring-cleavage product, maleylpyruvate (cis-2,4-diketohept-5-enedioic acid), was shown to be catalyzed by an enzyme, maleylpyruvate hydrolase 11, in Pseudomonas alcaligenes (P25X1) after growth with 3-hydroxybenzoate. This activity was separated from fumarylpyruvate hydr ... >> More
Hydrolysis of the gentisate ring-cleavage product, maleylpyruvate (cis-2,4-diketohept-5-enedioic acid), was shown to be catalyzed by an enzyme, maleylpyruvate hydrolase 11, in Pseudomonas alcaligenes (P25X1) after growth with 3-hydroxybenzoate. This activity was separated from fumarylpyruvate hydrolase activity during the course of its purification which accomplished an approximately 50-fold increase in specific activity. An apparent molecular weight of 77,000 was assigned on the basis of Sephadex G-200 chromatography. Despite the presence of up to three similarly migrating bands of protein on polyacrylamide-gel electrophoresis of the purified enzyme, at least two of these bands possessed maleylpyruvate hydrolase activity. Electrophoresis on sodium dodecyl sulfate-polyacrylamide before and after reduction with mercaptoethanol gave a principal band of molecular weight of 33,000 (and a minor band of molecular weight 50,000). A number of substituted maleylpyruvates also served as substrates for maleylpyruvate hydrolase 11, but maleylacetoacetate and fumarylpyruvate were not attacked. Fumarylpyruvate hydrolase was purified approximately 40-fold to give a single band on polyacrylamide gels and with an apparent molecular weight of 73,000 by Sephadex G-200 chromatography. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis before or after reduction with mercaptoethanol, a subunit molecular weight of 25,000 was obtained. Neither maleylpyruvate nor fumarylacetoacetate served as substrates for fumarylpyruvate hydrolase. The activities of both maleyl- and fumarylpyruvate hydrolases were stimulated by Mn(2+) ions. Reasons are discussed for the presence of both enzyme activities, one of which appears to be redundant. << Less
J. Bacteriol. 143:70-77(1980) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
Hopper D.J., Chapman P.J., Dagley S.
1. Cell-free extracts, prepared from a non-fluorescent Pseudomonas grown on m-cresol, oxidized gentisate and certain alkyl-substituted gentisates with the consumption of 1 mol of oxygen and the formation of 1 mol of pyruvate from 1 mol of substrate. 2. In addition to pyruvate, malate was formed fr ... >> More
1. Cell-free extracts, prepared from a non-fluorescent Pseudomonas grown on m-cresol, oxidized gentisate and certain alkyl-substituted gentisates with the consumption of 1 mol of oxygen and the formation of 1 mol of pyruvate from 1 mol of substrate. 2. In addition to pyruvate, malate was formed from gentisate; citramalate was formed from 3-methylgentisate and 4-methylgentisate; 2,3-dimethylmalate was formed from 3,4-dimethylgentisate. 3. One enantiomer, d-(-)-citramalate, was formed enzymically from 3-methylgentisate, 4-methylgentisate and citraconate. l-(+)-Citramalate was formed from mesaconate by the same extracts. When examined as its dimethyl ester by gas-liquid chromatography, enzymically formed 2,3-dimethylmalate showed the same behaviour as one of the two racemates prepared from the synthetic compound. 4. Maleate, citraconate and 2,3-dimethylmaleate were rapidly hydrated by cell extracts, but ethylfumarate and 2,3-dimethylfumarate were not attacked. 5. Cell extracts oxidized 1,4-dihydroxy-2-naphthoate to give pyruvate and phthalate. 6. Alkylgentisates were oxidized by a gentisate oxygenase (EC 1.13.1.4) present in Pseudomonas 2,5. The ring-fission products were attacked by maleylpyruvase, but not by fumarylpyruvase, and their u.v.-absorption spectra were those expected for alkyl-substituted maleylpyruvates. 7. When supplemented with ATP, CoA, succinate and Mg(2+) ions, an enzyme system from cells grown with 2,5-xylenol formed pyruvate from d-but not from l-citramalate. Extracts from cells grown with dl-citramalate or with itaconate attacked both d- and l-citramalate; other alkylmalates were cleaved in similar fashion to give pyruvate or 2-oxobutyrate. 8. These results accord with a general sequence of reactions in which the benzene nucleus of an alkylgentisate is cleaved to give an alkyl-substituted maleylpyruvate. The ring-fission products are hydrolysed to give pyruvate, plus alkylmalic acids which then undergo aldol fissions, probably as their CoA esters. In Pseudomonas 2,5 several homologous sequences of this general type appear to be catalysed by a single battery of enzymes with broad substrate specificities, whereas the metabolic capabilities of the fluorescent Pseudomonas 3,5 are more restricted. 9. Intact cells of both organisms metabolize d-malic acid by reactions that have not been elucidated, but are different from those which degrade alkylmalates. << Less