Reaction participants Show >> << Hide
- Name help_outline (2R)-2-O-(α-D-glucopyranosyl)-glycerate Identifier CHEBI:62510 Charge -1 Formula C9H15O9 InChIKeyhelp_outline DDXCFDOPXBPUJC-CECBSOHTSA-M SMILEShelp_outline OC[C@H]1O[C@H](O[C@H](CO)C([O-])=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2R)-2-O-[α-D-mannopyranosyl-(1→2)-α-D-glucopyranosyl]-glycerate Identifier CHEBI:87836 Charge -1 Formula C15H25O14 InChIKeyhelp_outline YYJFQOMCNVLANJ-MQZSKFSESA-M SMILEShelp_outline [C@H]1([C@@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O[C@@H]2[C@H]([C@H]([C@@H]([C@H](O2)CO)O)O)O)O[C@@H](C([O-])=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP Identifier CHEBI:58189 Charge -3 Formula C10H12N5O11P2 InChIKeyhelp_outline QGWNDRXFNXRZMB-UUOKFMHZSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 184 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47728 | RHEA:47729 | RHEA:47730 | RHEA:47731 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Publications
-
Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis.
Fernandes C., Mendes V., Costa J., Empadinhas N., Jorge C., Lamosa P., Santos H., da Costa M.S.
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (Gp ... >> More
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. << Less
J. Bacteriol. 192:1624-1633(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.