Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycerol Identifier CHEBI:17815 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 197 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 231 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol Identifier CHEBI:17670 Charge 0 Formula C11H16O10R2 SMILEShelp_outline OC[C@H]1O[C@H](OC[C@@H](COC([*])=O)OC([*])=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47612 | RHEA:47613 | RHEA:47614 | RHEA:47615 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea.
Berg S., Edman M., Li L., Wikstrom M., Wieslander A.
Synthesis of the nonbilayer-prone alpha-monoglucosyldiacylglycerol (MGlcDAG) is crucial for bilayer packing properties and the lipid surface charge density in the membrane of Acholeplasma laidlawii. The gene for the responsible, membrane-bound glucosyltransferase (alMGS) (EC ) was sequenced and fu ... >> More
Synthesis of the nonbilayer-prone alpha-monoglucosyldiacylglycerol (MGlcDAG) is crucial for bilayer packing properties and the lipid surface charge density in the membrane of Acholeplasma laidlawii. The gene for the responsible, membrane-bound glucosyltransferase (alMGS) (EC ) was sequenced and functionally cloned in Escherichia coli, yielding MGlcDAG in the recombinants. Similar amino acid sequences were encoded in the genomes of several Gram-positive bacteria (especially pathogens), thermophiles, archaea, and a few eukaryotes. All of these contained the typical EX(7)E catalytic motif of the CAZy family 4 of alpha-glycosyltransferases. The synthesis of MGlcDAG by a close sequence analog from Streptococcus pneumoniae (spMGS) was verified by polymerase chain reaction cloning, corroborating a connection between sequence and functional similarity for these proteins. However, alMGS and spMGS varied in dependence on anionic phospholipid activators phosphatidylglycerol and cardiolipin, suggesting certain regulatory differences. Fold predictions strongly indicated a similarity for alMGS (and spMGS) with the two-domain structure of the E. coli MurG cell envelope glycosyltransferase and several amphipathic membrane-binding segments in various proteins. On the basis of this structure, the alMGS sequence charge distribution, and anionic phospholipid dependence, a model for the bilayer surface binding and activity is proposed for this regulatory enzyme. << Less
-
Lipid dependence and basic kinetics of the purified 1,2-diacylglycerol 3-glucosyltransferase from membranes of Acholeplasma laidlawii.
Karlsson O.P., Dahlqvist A., Vikstrom S., Wieslander A.
UDP-glucose: 1,2-diacylglycerol 3-glucosyltransferase (EC 2.4.1.157), catalyzes the transfer of glucose from UDP-glucose to diacylglycerol (DAG) to yield monoglucosyldiacylglycerol (MGlcDAG) and UDP. MGlcDAG is the first glucolipid along the glucolipid pathway, and a major (nonbilayer-prone) lipid ... >> More
UDP-glucose: 1,2-diacylglycerol 3-glucosyltransferase (EC 2.4.1.157), catalyzes the transfer of glucose from UDP-glucose to diacylglycerol (DAG) to yield monoglucosyldiacylglycerol (MGlcDAG) and UDP. MGlcDAG is the first glucolipid along the glucolipid pathway, and a major (nonbilayer-prone) lipid in the single membrane of Acholeplasma laidlawii. MGlcDAG is further glucosylated to give the major diglucosyldiacylglycerol (DGlc-DAG). The bilayer fractions of these lipids are crucial for the metabolic maintenance of phase equilibria close to a potential bilayer-nonbilayer transition and a nearly constant spontaneous curvature. The glucolipid syntheses are also balanced against the phosphatidylglycerol pathway, competing for the common minor precursor phosphatidic acid, to retain a constant lipid surface charge density. The 1,2-diacylglycerol 3-glucosyltransferase was purified to homogeneity from detergent-solubilized A. laidlawii cells by three column chromatography methods (enrichment approximately 9000 x), and identified as a minor 40-kDa protein by using SDS-polyacrylamide gel electrophoresis. In CHAPS detergent, mixed micelles, a cooperative dependence on anionic lipids for activity was confirmed. Dependence of the enzyme on UDP-glucose followed Michaelis-Menten kinetics while the other hydrophobic substrate dioleoylglycerol stimulated the enzyme by an activating, potentially cooperative mechanism. Physiological concentrations of the activator lipid dioleoyl-phosphatidylglycerol influenced the turnover number of the enzyme but not the interaction with UDP-glucose, as inferred from variable and constant values of the apparent Vmax and Km, respectively. Dipalmitoylglycerol was a better substrate than the oleoyl species, supporting earlier in vivo and crude enzyme data. The responses of the purified 1,2-diacylglycerol 3-glucosyltransferase indicated that (i) the regulatory features of the MGlcDAG synthesis is held by the catalytic enzyme itself, and (ii) this strongly corroborates the "homeostasis" model for lipid bilayer properties in A. laidlawii proposed earlier. << Less