Enzymes
UniProtKB help_outline | 16 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoate ester Identifier CHEBI:25835 Charge 0 Formula C16H31O2R SMILEShelp_outline C(CCCCCCCCCC)CCCCC(O*)=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aliphatic alcohol Identifier CHEBI:2571 Charge 0 Formula HOR SMILEShelp_outline O* 2D coordinates Mol file for the small molecule Search links Involved in 214 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoate Identifier CHEBI:7896 (Beilstein: 3589907; CAS: 143-20-4) help_outline Charge -1 Formula C16H31O2 InChIKeyhelp_outline IPCSVZSSVZVIGE-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 92 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47392 | RHEA:47393 | RHEA:47394 | RHEA:47395 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.
M N.K., V B S C T., G K V., B C.S., Guntupalli S., J S B.
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 a ... >> More
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G(205)XS(207)XG(209) and H(120)XXXXD(125) Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser(207) of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser(207) and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. << Less
Biosci. Rep. 36:0-0(2016) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of a novel exported esterase Rv3036c from Mycobacterium tuberculosis.
Chen L., Dang G., Deng X., Cao J., Yu S., Wu D., Pang H., Liu S.
Mycobacterium tuberculosis possesses an unusually high number of genes involved in the metabolism of lipids. Driven by a newly described esterase motif SXXK in the amino acid sequence and a predicted signal peptide, the gene rv3036c from M. tuberculosis was cloned and characterized biochemically. ... >> More
Mycobacterium tuberculosis possesses an unusually high number of genes involved in the metabolism of lipids. Driven by a newly described esterase motif SXXK in the amino acid sequence and a predicted signal peptide, the gene rv3036c from M. tuberculosis was cloned and characterized biochemically. Rv3036c efficiently hydrolyzes soluble p-nitrophenyl esters but not emulsified lipid. The highest activity of this enzyme was observed when p-nitrophenyl acetate (C2) was used as the substrate. Based on the activities, Rv3036c was classified as a nonlipolytic hydrolase. The results of immunoreactivity studies on the subcellular mycobacterial fractions suggested that the enzyme was present in the cell wall and cell membrane in mycobacteria. In summary, Rv3036c was characterized as a novel cell wall-anchored esterase from M. tuberculosis. << Less
Protein Expr. Purif. 104:50-56(2014) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in xenobiotic degradation.
Jadeja D., Dogra N., Arya S., Singh G., Singh G., Kaur J.
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme ... >> More
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity. << Less
J. Cell. Biochem. 117:390-401(2016) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Characterization of an acid inducible lipase Rv3203 from Mycobacterium tuberculosis H37Rv.
Singh G., Arya S., Narang D., Jadeja D., Singh G., Gupta U.D., Singh K., Kaur J.
The Rv3203 (LipV) of Mycobacterium tuberculosis (Mtb) H37Rv, is annotated as a member of Lip family based on the presence of characteristic consensus esterase motif ‘GXSXG’. In vitro culture studies of Mtb H37Ra indicated that expression of Rv3203 gene was up-regulated during acidic stress as comp ... >> More
The Rv3203 (LipV) of Mycobacterium tuberculosis (Mtb) H37Rv, is annotated as a member of Lip family based on the presence of characteristic consensus esterase motif ‘GXSXG’. In vitro culture studies of Mtb H37Ra indicated that expression of Rv3203 gene was up-regulated during acidic stress as compared to normal whereas no expression was observed under nutrient and oxidative stress conditions. Therefore, detailed characterization of Rv3203 was done by gene cloning and its further expression and purification as his-tagged protein in microbial expression system. The enzyme was purified to homogeneity by affinity chromatography. It demonstrated broad substrate specificity and preferentially hydrolyzed p-nitrophenyl myristate. The purified enzyme demonstrated an optimum activity at pH 8.0 and temperature 50 °C. The specific activity, K m and V max of enzyme was determined to be 21.29 U mg(-1) protein, 714.28 μM and 62.5 μmol ml(-1) min(-1), respectively. The pH stability assay and circular dichroism spectroscopic analysis revealed that Rv3203 protein is more stable in acidic condition. Tetrahydrolipstatin, a specific lipase inhibitor and RHC80267, a diacylglycerol lipase inhibitor abolished the activity of this enzyme. The catalytic triad residues were determined to be Ser50, Asp180 and His203 residues by site-directed mutagenesis. << Less
Mol. Biol. Rep. 41:285-296(2014) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification and characterization of lipase activity and immunogenicity of LipL from Mycobacterium tuberculosis.
Cao J., Dang G., Li H., Li T., Yue Z., Li N., Liu Y., Liu S., Chen L.
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzym ... >> More
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses. << Less
PLoS ONE 10:E0138151-E0138151(2015) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase.
Eggert T., Pencreac'h G., Douchet I., Verger R., Jaeger K.-E.
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic ho ... >> More
A novel gene lipB, which encodes an extracellular lipolytic enzyme, was identified in the Bacillus subtilis genomic DNA sequence. We have cloned and overexpressed lipB in B. subtilis and Escherichia coli and have also purified the enzyme from a B. subtilis culture supernatant to electrophoretic homogeneity. Four different lipase assays were used to determine its catalytic activity: pH-stat, spectrophotometry, fluorimetry and the monomolecular film technique. LipB preferentially hydrolysed triacylglycerol-esters and p-nitrophenyl-esters of fatty acids with short chain lengths of </= 10 carbon atoms. Triolein, which is a typical substrate for true lipases, was not hydrolysed at all. These results led us to classify LipB as an esterase rather than a lipase. The catalytic triad of LipB consists of residues Ser78, Asp134, and His157 as demonstrated by amino-acid sequence alignments and site-directed mutagenesis. The nucleophile Ser78 is located in a lipase-specific consensus sequence, which is Ala-X-Ser-X-Gly for most Bacillus lipases. All other bacterial lipases contain a glycine residue instead of the alanine at position-2 with respect to the catalytic serine. We have investigated the role of this alanine residue by constructing LipB variant A76G, thereby restoring the lipase-specific consensus motif. When compared with LipB this variant showed a markedly reduced thermostability but an increased stability at pH 5-7. Determination of the specific activities of wild-type LipB and variant A76G using a monomolecular film of the substrate monoolein revealed an interesting result: the A76G substitution had converted the esterase LipB into a monoacylglycerol hydrolase. << Less
Eur. J. Biochem. 267:6459-6469(2000) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.
Muralidharan M., Buss K., Larrimore K.E., Segerson N.A., Kannan L., Mor T.S.
Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime mold ... >> More
Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. << Less
Plant Mol. Biol. 81:565-576(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.