Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline (24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oyl-CoA Identifier CHEBI:59807 Charge -4 Formula C48H76N7O21P3S InChIKeyhelp_outline PXHZOQNODUPJKC-MTLGCJAASA-J SMILEShelp_outline [H][C@@](C)(CC[C@@H](O)[C@@H](C)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,201 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3α,7α,12α-trihydroxy-24-oxo-5β-cholestan-26-oyl-CoA Identifier CHEBI:58507 Charge -4 Formula C48H74N7O21P3S InChIKeyhelp_outline AWLXQJGPNLCTLM-YFXOTMPNSA-J SMILEShelp_outline [H][C@@](C)(CCC(=O)C(C)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,130 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47088 | RHEA:47089 | RHEA:47090 | RHEA:47091 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency.
van Grunsven E.G., van Berkel E., Ijlst L., Vreken P., de Klerk J.B.C., Adamski J., Lemonde H., Clayton P.T., Cuebas D.A., Wanders R.J.A.
Peroxisomes play an essential role in a number of different metabolic pathways, including the beta-oxidation of a distinct set of fatty acids and fatty acid derivatives. The importance of the peroxisomal beta-oxidation system in humans is made apparent by the existence of a group of inherited dise ... >> More
Peroxisomes play an essential role in a number of different metabolic pathways, including the beta-oxidation of a distinct set of fatty acids and fatty acid derivatives. The importance of the peroxisomal beta-oxidation system in humans is made apparent by the existence of a group of inherited diseases in which peroxisomal beta-oxidation is impaired. This includes X-linked adrenoleukodystrophy and other disorders with a defined defect. On the other hand, many patients have been described with a defect in peroxisomal beta-oxidation of unknown etiology. Resolution of the defects in these patients requires the elucidation of the enzymatic organization of the peroxisomal beta-oxidation system. Importantly, a new peroxisomal beta-oxidation enzyme was recently described called D-bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activity primarily reacting with alpha-methyl fatty acids like pristanic acid and di- and trihydroxycholestanoic acid. In this patient we describe the first case of D-bifunctional protein deficiency as resolved by enzyme activity measurements and mutation analysis. The mutation found (Gly16Ser) is in the dehydrogenase coding part of the gene in an important loop of the Rossman fold forming the NAD+-binding site. The results show that the newly identified D-bifunctional protein plays an essential role in the peroxisomal beta-oxidation pathway that cannot be compensated for by the L-specific bifunctional protein. << Less
Proc. Natl. Acad. Sci. U.S.A. 95:2128-2133(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Peroxisomal fatty acid oxidation disorders and 58 kDa sterol carrier protein X (SCPx). Activity measurements in liver and fibroblasts using a newly developed method.
Ferdinandusse S., Denis S., van Berkel E., Dacremont G., Wanders R.J.
Sterol carrier protein X (SCPx) plays a crucial role in the peroxisomal oxidation of branched-chain fatty acids. To investigate whether patients with an unresolved defect in peroxisomal beta-oxidation are deficient for SCPx, we developed a novel and specific assay to measure the activity of SCPx i ... >> More
Sterol carrier protein X (SCPx) plays a crucial role in the peroxisomal oxidation of branched-chain fatty acids. To investigate whether patients with an unresolved defect in peroxisomal beta-oxidation are deficient for SCPx, we developed a novel and specific assay to measure the activity of SCPx in both liver and fibroblast homogenates. The substrate used in the assay, 3alpha, 7alpha,12alpha-trihydroxy-24-keto-5beta-cholestanoy l-CoA (24-keto-THC-CoA), is produced by preincubating the enoyl-CoA of the bile acid intermediate THCA with a lysate from the yeast Saccharomyces cerevisiae expressing human D-bifunctional protein. After the preincubation period, liver or fibroblast homogenate is added plus CoASH, and the production of choloyl-CoA is determined by HPLC. The specificity of the assay was demonstrated by the finding of a full deficiency in fibroblasts from an SCPx knock-out mouse. In addition to SCPx activity measurements in fibroblasts from patients with a defect in peroxisomal beta-oxidation of unresolved etiology, we studied the stability and activity of SCPx in fibroblasts from patients with Zellweger syndrome, which lack functional peroxisomes. We found that SCPx is not only stable in the cytosol, but displays a higher activity in fibroblasts from patients with Zellweger syndrome than in control fibroblasts. Furthermore, in all patients studied with a defect in peroxisomal beta-oxidation of unknown origin, SCPx was found to be normally active, indicating that human SCPx deficiency remains to be identified. << Less
J. Lipid Res. 41:336-342(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.