Enzymes
UniProtKB help_outline | 7 proteins |
Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 175 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-selinene Identifier CHEBI:59961 (Beilstein: 2501574; CAS: 473-13-2) help_outline Charge 0 Formula C15H24 InChIKeyhelp_outline OZQAPQSEYFAMCY-QLFBSQMISA-N SMILEShelp_outline [H][C@]1(CC[C@@]2(C)CCC=C(C)[C@]2([H])C1)C(C)=C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47052 | RHEA:47053 | RHEA:47054 | RHEA:47055 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Diversity and Functional Evolution of Terpene Synthases in Dictyostelid Social Amoebae.
Chen X., Kollner T.G., Shaulsky G., Jia Q., Dickschat J.S., Gershenzon J., Chen F.
Dictyostelids, or social amoebae, have a unique life style in forming multicellular fruiting bodies from unicellular amoeboids upon starvation. Recently, dictyostelids were found to contain terpene synthase (TPS) genes, a gene type of secondary metabolism previously known to occur only in plants, ... >> More
Dictyostelids, or social amoebae, have a unique life style in forming multicellular fruiting bodies from unicellular amoeboids upon starvation. Recently, dictyostelids were found to contain terpene synthase (TPS) genes, a gene type of secondary metabolism previously known to occur only in plants, fungi and bacteria. Here we report an evolutionary functional study of dictyostelid TPS genes. The number of TPS genes in six species of dictyostelids examined ranges from 1 to 19; and the model species Dictyostelium purpureum contains 12 genes. Using in vitro enzyme assays, the 12 TPS genes from D. purpureum were shown to encode functional enzymes with distinct product profiles. The expression of the 12 TPS genes in D. purpureum is developmentally regulated. During multicellular development, D. purpureum releases a mixture of volatile terpenes dominated by sesquiterpenes that are the in vitro products of a subset of the 12 TPS genes. The quality and quantity of the terpenes released from D. purpureum, however, bear little resemblance to those of D. discoideum, a closely related dictyostelid. Despite these variations, the conserved clade of dictyostelid TPSs, which have an evolutionary distance of more than 600 million years, has the same biochemical function, catalyzing the formation of a sesquiterpene protoillud-7-ene. Taken together, our results indicate that the dynamic evolution of dictyostelid TPS genes includes both purifying selection of an orthologous group and species-specific expansion with functional divergence. Consequently, the terpenes produced by these TPSs most likely have conserved as well as species-adaptive biological functions as chemical languages in dictyostelids. << Less
Sci. Rep. 8:14361-14361(2018) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification, Functional Characterization, and Seasonal Expression Patterns of Five Sesquiterpene Synthases in Liquidambar formosana.
Chuang L., Wen C.H., Lee Y.R., Lin Y.L., Hsu L.R., Wang S.Y., Chu F.H.
Terpenoids are a large group of important secondary metabolites that are involved in a variety of physiological mechanisms, and many are used commercially in the cosmetics and pharmaceutical industries. During the past decade, the topic of seasonal variation in terpenoid biosynthesis has garnered ... >> More
Terpenoids are a large group of important secondary metabolites that are involved in a variety of physiological mechanisms, and many are used commercially in the cosmetics and pharmaceutical industries. During the past decade, the topic of seasonal variation in terpenoid biosynthesis has garnered increasing attention. Formosan sweet gum ( Liquidambar formosana Hance) is a deciduous tree species. The expression of terpene synthase and accumulation of terpenoids in leaves may vary in different seasons. Here, four sesquiterpene synthases (i.e., LfTPS01, LfTPS02, LfTPS03, and LfTPS04) and a bifunctional mono/sesquiterpene synthase ( LfTPS05) were identified from Formosan sweet gum. The gene expression of LfTPS01, LfTPS02, and LfTPS03 showed seasonal diversification, and, in addition, expression of LfTPS04 and LfTPS05 was induced by methyl jasmonate treatment. The major products LfTPS01, LfTPS02, LfTPS04, and LfTPS05 are hedycaryol, α-selinene, trans-β-caryophyllene, α-copaene/δ-cadinene, and nerolidol/linalool, respectively. The data indicated that the sesquiterpenoid content in the essential oil of Formosan sweet gum leaves shows seasonal differences that were correlated to the sesquiterpene synthase gene expression. << Less
-
The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil.
Iijima Y., Davidovich-Rikanati R., Fridman E., Gang D.R., Bar E., Lewinsohn E., Pichersky E.
Surface glandular trichomes distributed throughout the aerial parts of sweet basil (Ocimum basilicum) produce and store monoterpene, sesquiterpene, and phenylpropene volatiles. Three distinct basil chemotypes were used to examine the molecular mechanisms underlying the divergence in their monoterp ... >> More
Surface glandular trichomes distributed throughout the aerial parts of sweet basil (Ocimum basilicum) produce and store monoterpene, sesquiterpene, and phenylpropene volatiles. Three distinct basil chemotypes were used to examine the molecular mechanisms underlying the divergence in their monoterpene and sesquiterpene content. The relative levels of specific terpenes in the glandular trichomes of each cultivar were correlated with the levels of transcripts for eight genes encoding distinct terpene synthases. In a cultivar that produces mostly (R)-linalool, transcripts of (R)-linalool synthase (LIS) were the most abundant of these eight. In a cultivar that synthesizes mostly geraniol, transcripts of geraniol synthase were the most abundant, but the glands of this cultivar also contained a transcript of an (R)-LIS gene with a 1-base insertion that caused a frameshift mutation. A geraniol synthase-LIS hybrid gene was constructed and expressed in Escherichia coli, and the protein catalyzed the formation of both geraniol and (R)-linalool from geranyl diphosphate. The total amounts of terpenes were correlated with total levels of terpene synthase activities, and negatively correlated with levels of phenylpropanoids and phenylalanine ammonia lyase activity. The relative levels of geranyl diphosphate synthase and farnesyl diphosphate synthase activities did not correlate with the total amount of terpenes produced, but showed some correlation with the ratio of monoterpenes to sesquiterpenes. << Less
Plant Physiol. 136:3724-3736(2004) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.