Reaction participants Show >> << Hide
- Name help_outline 7-dehydrodesmosterol Identifier CHEBI:27910 (Beilstein: 2569831; CAS: 1715-86-2) help_outline Charge 0 Formula C27H42O InChIKeyhelp_outline RUSSPKPUXDSHNC-DDPQNLDTSA-N SMILEShelp_outline [H][C@@]1(CC[C@@]2([H])C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,310 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline desmosterol Identifier CHEBI:17737 (CAS: 313-04-2) help_outline Charge 0 Formula C27H44O InChIKeyhelp_outline AVSXSVCZWQODGV-DPAQBDIFSA-N SMILEShelp_outline [H][C@@]1(CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C)[C@H](C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,316 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46740 | RHEA:46741 | RHEA:46742 | RHEA:46743 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway.
Mazein A., Watterson S., Hsieh W.Y., Griffiths W.J., Ghazal P.
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. He ... >> More
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format. << Less
Biochem. Pharmacol. 86:56-66(2013) [PubMed] [EuropePMC]
This publication is cited by 30 other entries.
-
Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways.
Mitsche M.A., McDonald J.G., Hobbs H.H., Cohen J.C.
Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K-R pathway. Rather, a hybrid pathway was identified t ... >> More
Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K-R pathway. Rather, a hybrid pathway was identified that we call the modified K-R (MK-R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK-R pathway. Thus, relative use of the Bloch and MK-R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. << Less
Elife 4:E07999-E07999(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith--Lemli--Opitz syndrome.
Wassif C.A., Zhu P., Kratz L., Krakowiak P.A., Battaile K.P., Weight F.F., Grinberg A., Steiner R.D., Nwokoro N.A., Kelley R.I., Stewart R.R., Porter F.D.
The RSH/Smith--Lemli--Opitz syndrome (RSH/SLOS) is a human autosomal recessive syndrome characterized by multiple malformations, a distinct behavioral phenotype with autistic features and mental retardation. RSH/SLOS is due to an inborn error of cholesterol biosynthesis caused by mutation of the 3 ... >> More
The RSH/Smith--Lemli--Opitz syndrome (RSH/SLOS) is a human autosomal recessive syndrome characterized by multiple malformations, a distinct behavioral phenotype with autistic features and mental retardation. RSH/SLOS is due to an inborn error of cholesterol biosynthesis caused by mutation of the 3 beta-hydroxysterol Delta(7)-reductase gene. To further our understanding of the developmental and neurological processes that underlie the pathophysiology of this disorder, we have developed a mouse model of RSH/SLOS by disruption of the 3 beta-hydroxysterol Delta(7)-reductase gene. Here we provide the biochemical, phenotypic and neurophysiological characterization of this genetic mouse model. As in human patients, the RSH/SLOS mouse has a marked reduction of serum and tissue cholesterol levels and a marked increase of serum and tissue 7-dehydrocholesterol levels. Phenotypic similarities between this mouse model and the human syndrome include intra-uterine growth retardation, variable craniofacial anomalies including cleft palate, poor feeding with an uncoordinated suck, hypotonia and decreased movement. Neurophysiological studies showed that although the response of frontal cortex neurons to the neurotransmitter gamma-amino-n-butyric acid was normal, the response of these same neurons to glutamate was significantly impaired. This finding provides insight into potential mechanisms underlying the neurological dysfunction seen in this human mental retardation syndrome and suggests that this mouse model will allow the testing of potential therapeutic interventions. << Less
Hum. Mol. Genet. 10:555-564(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.