Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline progesterone Identifier CHEBI:17026 (Beilstein: 1915950; CAS: 57-83-0) help_outline Charge 0 Formula C21H30O2 InChIKeyhelp_outline RJKFOVLPORLFTN-LEKSSAKUSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)[C@H](CC[C@@]21[H])C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5β-pregnan-3,20-dione Identifier CHEBI:30154 (CAS: 128-23-4) help_outline Charge 0 Formula C21H32O2 InChIKeyhelp_outline XMRPGKVKISIQBV-XWOJZHJZSA-N SMILEShelp_outline [H][C@]12CC[C@@]3([H])[C@]4([H])CC[C@H](C(C)=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46660 | RHEA:46661 | RHEA:46662 | RHEA:46663 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Genomic organization of a human 5beta-reductase and its pseudogene and substrate selectivity of the expressed enzyme.
Charbonneau A., The V.L.
The enzyme 5beta-reductase catalyzes the reduction of the 4-ene of 3-ketosteroids, converting them into 5beta-dihydro-3-ketosteroids and, thus, could be involved in the metabolism of 4-cholestene-3-one, progesterone, 17~-hydroxyprogesterone, aldosterone, corticosterone, cortisol, 4-androstenedione ... >> More
The enzyme 5beta-reductase catalyzes the reduction of the 4-ene of 3-ketosteroids, converting them into 5beta-dihydro-3-ketosteroids and, thus, could be involved in the metabolism of 4-cholestene-3-one, progesterone, 17~-hydroxyprogesterone, aldosterone, corticosterone, cortisol, 4-androstenedione, and testosterone. In this study, we report the genomic structure of a human 5beta-reductase gene, its tissue distribution, the characterization of an intronless pseudogene and the substrate selectivity of the enzyme. The gene coding for the active 5beta-reductase contains nine exons like most members of the aldo-keto reductase family, but the sequence covered by the gene, more than 42 kb, is much longer than the sequence of other members of this family. There are many large introns, especially introns 3, 4 and 7 that span approx. 7 kb, and intron 1 that contains more than 10 kb. Northern blot analysis showed three band sizes of 1.3, 2.2 and 2.7 kb. The 1.3 and 2.7 kb bands are highly expressed in the liver while weaker 2.2 and 1.3 kb bands have been observed in the testis and colon, respectively. We also identified an intronless gene having 86% homology with the 5beta-reductase cDNA sequence. Since its sequence contains many stop codons, this gene is most probably a pseudogene. To determine more precisely the substrate selectivity of the enzyme, we established a stable cell line expressing human 5beta-reductase in transformed embryonic kidney (HEK-293) cells. The transfected cells efficiently catalyze the transformation of progesterone, androstenedione, 17alpha-hydroxyprogesterone and testosterone. However, they catalyze much less efficiently the transformation of compounds containing an 11beta-hydroxy group, such as aldosterone, corticosterone and cortisol. In addition to its role in cholesterol catabolism, it is well recognized that 5beta-reductase inactivates active androgens. Indeed, 5beta-dihydrotestosterone (5beta-DHT), the product of the reduction of testosterone by 5beta-reductase, is not active while its 5~-isomer (DHT) is the most potent natural androgen. Recent findings show that 5beta-pregnanes are active ligands in the induction of CYP3A through the orphan receptor hPAR. Our results thus open an opportunity for studying the new role of 5beta-reductase in the formation of a new type of active steroids. << Less
Biochim. Biophys. Acta 1517:228-235(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Substrate specificity and inhibitor analyses of human steroid 5beta-reductase (AKR1D1).
Chen M., Drury J.E., Penning T.M.
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ(4)-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. ... >> More
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ(4)-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. The biochemical properties of the enzyme have not been thoroughly studied and conflicting data have been reported, partially due to the lack of highly homogeneous protein. In the present study, we systematically determined the substrate specificity of homogeneous human recombinant AKR1D1 using C18, C19, C21, and C27 Δ(4)-ketosteroids and assessed the pH-rate dependence of the enzyme. Our results show that AKR1D1 proficiently reduced all the steroids tested at physiological pH, indicating AKR1D1 is the only enzyme necessary for all the 5β-steroid metabolites present in humans. Substrate inhibition was observed with C18 to C21 steroids provided that the C11 position was unsubstituted. This structure activity relationship can be explained by the existence of a small alternative substrate binding pocket revealed by the AKR1D1 crystal structure. Non-steroidal anti-inflammatory drugs which are potent inhibitors of the related AKR1C enzymes do not inhibit AKR1D1. By contrast chenodeoxycholate and ursodeoxycholate were found to be potent non-competitive inhibitors suggesting that bile-acids may regulate their own synthesis at the level of AKR1D1 inhibition. << Less
Steroids 76:484-490(2011) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.