Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3β-hydroxyandrost-5-en-17-one Identifier CHEBI:28689 (CAS: 53-43-0) help_outline Charge 0 Formula C19H28O2 InChIKeyhelp_outline FMGSKLZLMKYGDP-USOAJAOKSA-N SMILEShelp_outline [H][C@@]12CC=C3C[C@@H](O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)C(=O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline androst-5-en-3β,17β-diol Identifier CHEBI:2710 (CAS: 521-17-5) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline QADHLRWLCPCEKT-LOVVWNRFSA-N SMILEShelp_outline [H][C@@]12CC[C@H](O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CC=C2C[C@@H](O)CC[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46628 | RHEA:46629 | RHEA:46630 | RHEA:46631 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Male pseudohermaphroditism caused by mutations of testicular 17 beta-hydroxysteroid dehydrogenase 3.
Geissler W.M., Davis D.L., Wu L., Bradshaw K.D., Patel S., Mendonca B.B., Elliston K.O., Wilson J.D., Russell D.W., Andersson S.
Defects in the conversion of androstenedione to testosterone in the fetal testes by the enzyme 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) give rise to genetic males with female external genitalia. We have used expression cloning to isolate cDNAs encoding a microsomal 17 beta-HSD type 3 iso ... >> More
Defects in the conversion of androstenedione to testosterone in the fetal testes by the enzyme 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) give rise to genetic males with female external genitalia. We have used expression cloning to isolate cDNAs encoding a microsomal 17 beta-HSD type 3 isozyme that shares 23% sequence identity with other 17 beta-HSD enzymes, uses NADPh as a cofactor, and is expressed predominantly in the testes. The 17 beta HSD3 gene on chromosome 9q22 contains 11 exons. Four substitution and two splice junction mutations were identified in the 17 beta HSD3 genes of five unrelated male pseudohermaphrodites. The substitution mutations severely compromised the activity of the 17 beta-HSD type 3 isozyme. << Less
Nat. Genet. 7:34-39(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Aldo-keto reductase 1B15 (AKR1B15): a mitochondrial human aldo-keto reductase with activity towards steroids and 3-keto-acyl-coa conjugates.
Weber S., Salabei J.K., Moller G., Kremmer E., Bhatnagar A., Adamski J., Barski O.A.
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromos ... >> More
Aldo-keto reductases (AKRs) comprise a superfamily of proteins involved in the reduction and oxidation of biogenic and xenobiotic carbonyls. In humans, at least 15 AKR superfamily members have been identified so far. One of these is a newly identified gene locus, AKR1B15, which clusters on chromosome 7 with the other human AKR1B subfamily members (i.e. AKR1B1 and AKR1B10). We show that alternative splicing of the AKR1B15 gene transcript gives rise to two protein isoforms with different N termini: AKR1B15.1 is a 316-amino acid protein with 91% amino acid identity to AKR1B10; AKR1B15.2 has a prolonged N terminus and consists of 344 amino acid residues. The two gene products differ in their expression level, subcellular localization, and activity. In contrast with other AKR enzymes, which are mostly cytosolic, AKR1B15.1 co-localizes with the mitochondria. Kinetic studies show that AKR1B15.1 is predominantly a reductive enzyme that catalyzes the reduction of androgens and estrogens with high positional selectivity (17β-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoA conjugates and exhibits strong cofactor selectivity toward NADP(H). In accordance with its substrate spectrum, the enzyme is expressed at the highest levels in steroid-sensitive tissues, namely placenta, testis, and adipose tissue. Placental and adipose expression could be reproduced in the BeWo and SGBS cell lines, respectively. In contrast, AKR1B15.2 localizes to the cytosol and displays no enzymatic activity with the substrates tested. Collectively, these results demonstrate the existence of a novel catalytically active AKR, which is associated with mitochondria and expressed mainly in steroid-sensitive tissues. << Less
J. Biol. Chem. 290:6531-6545(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Androgen metabolism via 17beta-hydroxysteroid dehydrogenase type 3 in mammalian and non-mammalian vertebrates: comparison of the human and the zebrafish enzyme.
Mindnich R., Haller F., Halbach F., Moeller G., Hrabe de Angelis M., Adamski J.
Formation and inactivation of testosterone is performed by various members of the 17beta-hydroxysteroid dehydrogenase (17beta-HSD) family. The main player in testosterone formation is considered to be 17beta-HSD type 3, which catalyzes the reduction of androstenedione to testosterone with high eff ... >> More
Formation and inactivation of testosterone is performed by various members of the 17beta-hydroxysteroid dehydrogenase (17beta-HSD) family. The main player in testosterone formation is considered to be 17beta-HSD type 3, which catalyzes the reduction of androstenedione to testosterone with high efficiency and is almost exclusively expressed in testis. So far, only the mammalian homologs have been characterized but nothing is known about the role of 17beta-HSD type 3 in other vertebrates. In this study, we describe the identification and characterization of the zebrafish homolog. We found zebrafish 17beta-HSD type 3 to be expressed in embryogenesis from sphere to 84 h post-fertilization. Expression was also detected in various tissues of both male and female adults, but displayed sexual dimorphism. Interestingly, expression was not highest in male testis but in male liver. In female adults, strongest expression was observed in ovaries. At the subcellular level, both human and zebrafish 17beta-HSD type 3 localize to the endoplasmic reticulum. The zebrafish enzyme in vitro effectively catalyzed the conversion of androstenedione to testosterone by use of NADPH as cofactor. Among further tested androgens epiandrosterone and dehydroepiandrosterone were accepted as substrates and reduced at C-17 by the human and the zebrafish enzyme. Androsterone and androstanedione though, were only substrates of human 17beta-HSD type 3, not the zebrafish enzyme. Furthermore, we found that both enzymes can reduce 11-ketoandrostenedione as well as 11beta-hydroxyandrostenedione at C-17 to the respective testosterone forms. Our results suggest that 17beta-HSD type 3 might play slightly different roles in zebrafish compared with human although testosterone itself is likely to have similar functions in both organisms. << Less
J. Mol. Endocrinol. 35:305-316(2005) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.