Enzymes
UniProtKB help_outline | 11,788 proteins |
Reaction participants Show >> << Hide
-
Namehelp_outline
[HPr protein]-L-serine
Identifier
RHEA-COMP:11602
Reactive part
help_outline
- Name help_outline L-serine residue Identifier CHEBI:29999 Charge 0 Formula C3H5NO2 SMILEShelp_outline C([C@H](CO)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 72 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[HPr protein]-O-phospho-L-serine
Identifier
RHEA-COMP:11603
Reactive part
help_outline
- Name help_outline O-phospho-L-serine residue Identifier CHEBI:83421 Charge -2 Formula C3H4NO5P SMILEShelp_outline [O-]P([O-])(=O)OC[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46600 | RHEA:46601 | RHEA:46602 | RHEA:46603 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Properties and regulation of the bifunctional enzyme HPr kinase/phosphatase in Bacillus subtilis.
Ramstroem H., Sanglier S., Leize-Wagner E., Philippe C., van Dorsselaer A., Haiech J.
The bifunctional allosteric enzyme HPr kinase/phosphatase (HPrK/P) from Bacillus subtilis is a key enzyme in the main mechanism of carbon catabolite repression/activation (i.e. a means for the bacteria to adapt rapidly to environmental changes in carbon sources). In this regulation system, the enz ... >> More
The bifunctional allosteric enzyme HPr kinase/phosphatase (HPrK/P) from Bacillus subtilis is a key enzyme in the main mechanism of carbon catabolite repression/activation (i.e. a means for the bacteria to adapt rapidly to environmental changes in carbon sources). In this regulation system, the enzyme can phosphorylate and dephosphorylate two proteins, HPr/HPr(Ser(P)) and Crh/Crh(Ser(P)), sensing the metabolic state of the cell. To acquire further insight into the properties of HPrK/P, electrospray ionization mass spectrometry, dynamic light scattering, and BIACORE were used to determine the oligomeric state of the protein under native conditions, revealing that the enzyme exists as a hexamer at pH 6.8 and as a monomer and dimer at pH 9.5. Using an in vitro radioactive assay, the influence of divalent cations, pH, temperature, and different glycolytic intermediates on the activity as well as kinetic parameters were investigated. The presence of divalent cations was found to be essential for both opposing activities of the enzyme. Furthermore, pH values equal to the internal pH of vegetative cells seem to favor the kinase activity, whereas lower pH values increased the phosphatase activity. Among the glycolytic intermediates evaluated, fructose 1,6-diphosphate and fructose 2,6-diphosphate were found to be allosteric activators in the kinase assay, whereas high concentrations inhibited the phosphatase activity, except for fructose 1,6-diphosphate in the case of HPr(Ser(P)). Phosphatase activity was induced by inorganic phosphate as well as acetyl phosphate and glyceraldehyde 3-phosphate. Kinetic parameters indicate a preference for binding of HPr compared with Crh to the enzyme and supported a strong positive cooperativity. This work suggests that the oligomeric state of the enzyme is influenced by several effectors and is correlated to the kinase or phosphatase activity. The phosphatase activity is mainly supported by the hexameric form. << Less
J. Biol. Chem. 278:1174-1185(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phosphorylation of HPr by the bifunctional HPr kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion.
Dossonnet V., Monedero V., Zagorec M., Galinier A., Perez-Martinez G., Deutscher J.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosp ... >> More
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process. << Less
-
The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase.
Kravanja M., Engelmann R., Dossonnet V., Bluggel M., Meyer H.E., Frank R., Galinier A., Deutscher J., Schnell N., Hengstenberg W.
The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase ... >> More
The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision-induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis. The gene was overexpressed in Escherichia coli, which does not contain any ATP-dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P-Ser-HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose-metabolizing Streptococci. At low ATP levels, the enzyme hydrolyses P-Ser-HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P-Ser-HPr according to the metabolic state of the cell; P-Ser-HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P-Ser-HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose-1,6-bisphosphate was also present. << Less
Mol. Microbiol. 31:59-66(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr.
Fieulaine S., Morera S., Poncet S., Mijakovic I., Galinier A., Janin J., Deutscher J., Nessler S.
HPr kinase/phosphorylase (HprK/P) controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by Gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The la ... >> More
HPr kinase/phosphorylase (HprK/P) controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by Gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The latter reaction uses inorganic phosphate as substrate and produces pyrophosphate. We present here two crystal structures of a complex of the catalytic domain of Lactobacillus casei HprK/P with Bacillus subtilis HPr, both at 2.8-A resolution. One of the structures was obtained in the presence of excess pyrophosphate, reversing the phosphorolysis reaction and contains serine-phosphorylated HPr. The complex has six HPr molecules bound to the hexameric kinase. Two adjacent enzyme subunits are in contact with each HPr molecule, one through its active site and the other through its C-terminal helix. In the complex with serine-phosphorylated HPr, a phosphate ion is in a position to perform a nucleophilic attack on the phosphoserine. Although the mechanism of the phosphorylation reaction resembles that of eukaryotic protein kinases, the dephosphorylation by inorganic phosphate is unique to the HprK/P family of kinases. This study provides the structure of a protein kinase in complex with its protein substrate, giving insights into the chemistry of the phospho-transfer reactions in both directions. << Less
Proc. Natl. Acad. Sci. U.S.A. 99:13437-13441(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of HPr kinase/phosphatase from Mycoplasma pneumoniae.
Allen G.S., Steinhauer K., Hillen W., Stuelke J., Brennan R.G.
HPr kinase/phosphatase (HPrK/P) modifies serine 46 of histidine-containing protein (HPr), the phosphorylation state of which is the control point of carbon catabolite repression in low G+C Gram-positive bacteria. To understand the structural mechanism by which HPrK/P carries out its dual, competin ... >> More
HPr kinase/phosphatase (HPrK/P) modifies serine 46 of histidine-containing protein (HPr), the phosphorylation state of which is the control point of carbon catabolite repression in low G+C Gram-positive bacteria. To understand the structural mechanism by which HPrK/P carries out its dual, competing activities we determined the structure of full length HPrK/P from Mycoplasma pneumoniae (PD8 ID, 1KNX) to 2.5A resolution. The enzyme forms a homo-hexamer with each subunit containing two domains connected by a short loop. The C-terminal domain contains the well-described P-loop (Walker A box) ATP binding motif and takes a fold similar to phosphoenolpyruvate carboxykinase (PEPCK) from Escherichia coli as recently described in other HPrK/P structures. As expected, the C-terminal domain is very similar to the C-terminal fragment of Lactobacillus casei HPrK/P and the C-terminal domain of Staphylococcus xylosus HPrK/P; the N-terminal domain is very similar to the N-terminal domain of S.xylosus HPrK/P. Unexpectedly, the N-terminal domain resembles UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-diaminopimelate ligase (MurE), yet the function of this domain is unclear. We discuss these observations as well as the structural significance of mutations in the P-loop and HPrK/P family sequence motif. << Less
J. Mol. Biol. 326:1203-1217(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.