Reaction participants Show >> << Hide
- Name help_outline an aliphatic nitrile Identifier CHEBI:80291 Charge 0 Formula CNR SMILEShelp_outline [*]C#N 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a carboxylate Identifier CHEBI:29067 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5,863 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46188 | RHEA:46189 | RHEA:46190 | RHEA:46191 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The nitrilase superfamily: classification, structure and function.
Pace H.C., Brenner C.
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 ... >> More
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences. << Less
Genome Biol 2:REVIEWS0001-REVIEWS0001(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity.
Zhu D., Mukherjee C., Yang Y., Rios B.E., Gallagher D.T., Smith N.N., Biehl E.R., Hua L.
A nitrilase gene blr3397 from Bradyrhizobium japonicum USDA110 was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a single band of about 34.5kD on SDS-PAGE. The molecular weight of the holoenzyme was about 340kD as determined by light s ... >> More
A nitrilase gene blr3397 from Bradyrhizobium japonicum USDA110 was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a single band of about 34.5kD on SDS-PAGE. The molecular weight of the holoenzyme was about 340kD as determined by light scattering analysis, suggesting that nitrilase blr3397 self-aggregated to an active form with the native structure being a decamer. The V(max) and K(m) for phenylacetonitrile were 3.15U/mg and 4.36mM, respectively. The catalytic constant k(cat) and specificity constant k(cat)/K(m) were 111min(-1) and 2.6x10(4)min(-1)M(-1). This nitrilase is most active toward the hydrolysis of hydrocinnamonitrile among the tested substrates (4.3 times that of phenylacetonitrile). The nitrilase blr3397 shows higher activity towards the hydrolysis of aliphatic nitriles than that for the aromatic counterparts, and can be characterized as an aliphatic nitrilase in terms of activity. This nitrilase also possesses distinct features from the nitrilase bll6402 of the same microbe. << Less
-
Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue.
Kobayashi M., Yanaka N., Nagasawa T., Yamada H.
Peptides obtained by cleavage of a Rhodococcus rhodochrous K22 nitrilase, which acts on aliphatic nitriles such as acrylonitrile, crotonitrile, and glutaronitrile, have been sequenced. The data allowed the design of oligonucleotide probes which were used to clone a nitrilase encoding gene. Plasmid ... >> More
Peptides obtained by cleavage of a Rhodococcus rhodochrous K22 nitrilase, which acts on aliphatic nitriles such as acrylonitrile, crotonitrile, and glutaronitrile, have been sequenced. The data allowed the design of oligonucleotide probes which were used to clone a nitrilase encoding gene. Plasmid pNK21, in which 2.05-kb sequence covering the region encoding the nitrilase was was placed under the control of the lac promoter, directed overproduction of enzymatically active nitrilase in response to addition of isopropyl beta-D-thiogalactopyranoside in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of nitrilase was about 40% of the total soluble proteins, leading to the establishment of a simple purification of the nitrilase. The nucleotide sequence of the nitrilase gene predicts a protein composed of 383 amino acids (M(r) = 42,275), including only one cysteine. The amino acid sequence homology between the Rhodococcus nitrilase and the Klebsiella ozaenae bromoxynil nitrilase [Stalker et al. (1988) J. Biol. Chem. 263, 6310-6314] was 38.3%, and a unique cysteinyl residue (Cys-170) in the former nitrilase was conserved at the corresponding position in the latter nitrilase. Cys-170 of the Rhodococcus nitrilase was replaced by Ala or Ser by site-directed mutagenesis. Both mutations resulted in the complete loss of nitrilase activity, clearly indicating that this cysteinyl residue is essential for the catalytic activity. << Less