Reaction participants Show >> << Hide
- Name help_outline 11-deoxycortisol Identifier CHEBI:28324 (Beilstein: 2511358; CAS: 152-58-9) help_outline Charge 0 Formula C21H30O4 InChIKeyhelp_outline WHBHBVVOGNECLV-OBQKJFGGSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@@]1(C)[C@@]2([H])CC[C@]1(O)C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [adrenodoxin]
Identifier
RHEA-COMP:9998
Reactive part
help_outline
- Name help_outline [2Fe-2S]1+ Identifier CHEBI:33738 Charge 1 Formula Fe2S2 InChIKeyhelp_outline MAGIRAZQQVQNKP-UHFFFAOYSA-N SMILEShelp_outline S1[Fe]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cortisol Identifier CHEBI:17650 (Beilstein: 1354819; CAS: 50-23-7) help_outline Charge 0 Formula C21H30O5 InChIKeyhelp_outline JYGXADMDTFJGBT-VWUMJDOOSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])[C@@H](O)C[C@@]1(C)[C@@]2([H])CC[C@]1(O)C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [adrenodoxin]
Identifier
RHEA-COMP:9999
Reactive part
help_outline
- Name help_outline [2Fe-2S]2+ Identifier CHEBI:33737 Charge 2 Formula Fe2S2 InChIKeyhelp_outline XSOVBBGAMBLACL-UHFFFAOYSA-N SMILEShelp_outline S1[Fe+]S[Fe+]1 2D coordinates Mol file for the small molecule Search links Involved in 238 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46100 | RHEA:46101 | RHEA:46102 | RHEA:46103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The effect of amino-acid substitutions I112P, D147E and K152N in CYP11B2 on the catalytic activities of the enzyme.
Bechtel S., Belkina N., Bernhardt R.
By replacing specific amino acids at positions 112, 147 and 152 of the human aldosterone synthase (CYP11B2) with the corresponding residues from human, mouse or rat 11beta-hydroxylase (CYP11B1), we have been able to investigate whether these residues belong to structural determinants of individual ... >> More
By replacing specific amino acids at positions 112, 147 and 152 of the human aldosterone synthase (CYP11B2) with the corresponding residues from human, mouse or rat 11beta-hydroxylase (CYP11B1), we have been able to investigate whether these residues belong to structural determinants of individual enzymatic activities. When incubated with 11-deoxycorticosterone (DOC), the 11beta-hydroxylation activity of the mutants was most effectively increased by combining D147E and I112P (sixfold increase). The two substitutions displayed an additive effect. The same tendency can be observed when using 11-deoxycortisol as a substrate, although the effect is less pronounced. The second step of the CYP11B2-dependent DOC conversion, the 18-hydroxylation activity, was not as strongly increased as the 11beta-hydroxylation potential. Activity was unaffected by D147E, whereas the single mutant I112P displayed the most pronounced activation (70% enhancement), thus causing different increasing effects on the first two enzymatic reaction steps. A slightly enhanced aldosterone synthesis from DOC could be measured due to increased levels of the intermediates. However, the 18-oxidation activity of all the mutants, except for I112S and D147E, was slightly reduced. The strongly enhanced 18-hydroxycorticosterone and aldosterone formation observed in the mutants provides important information on a possible role of such amino-acid replacements in the development of essential hypertension. Furthermore, the results indicate the possibility of a differential as well as independent modification of CYP11B2 reaction steps. The combination of functional data and computer modelling of CYP11B2 suggests an indirect involvement of residue 147 in the regulation of CYP11B isoform specific substrate conversion due to its location on the protein surface. In addition, the results indicate the functional significance of amino-acid 112 in the putative substrate access channel of human CYP11B2. Thus, we present the first example of substrate recognition and conversion being attributed to the N-terminal part of human CYP11B2. << Less
Eur. J. Biochem. 269:1118-1127(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Structural insights into aldosterone synthase substrate specificity and targeted inhibition.
Strushkevich N., Gilep A.A., Shen L., Arrowsmith C.H., Edwards A.M., Usanov S.A., Park H.W.
Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of electrolyte balance and blood pressure. Excess aldosterone levels can arise from dysregulation of the renin-angiotensin-aldosterone system and are implicated in the pathogenesis of hypertension and heart fa ... >> More
Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of electrolyte balance and blood pressure. Excess aldosterone levels can arise from dysregulation of the renin-angiotensin-aldosterone system and are implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (cytochrome P450 11B2, CYP11B2) is the sole enzyme responsible for the production of aldosterone in humans. Blocking of aldosterone synthesis by mediating aldosterone synthase activity is thus a recently emerging pharmacological therapy for hypertension, yet a lack of structural information has limited this approach. Here, we present the crystal structures of human aldosterone synthase in complex with a substrate deoxycorticosterone and an inhibitor fadrozole. The structures reveal a hydrophobic cavity with specific features associated with corticosteroid recognition. The substrate binding mode, along with biochemical data, explains the high 11β-hydroxylase activity of aldosterone synthase toward both gluco- and mineralocorticoid formation. The low processivity of aldosterone synthase with a high extent of intermediates release might be one of the mechanisms of controlled aldosterone production from deoxycorticosterone. Although the active site pocket is lined by identical residues between CYP11B isoforms, most of the divergent residues that confer additional 18-oxidase activity of aldosterone synthase are located in the I-helix (vicinity of the O(2) activation path) and loops around the H-helix (affecting an egress channel closure required for retaining intermediates in the active site). This intrinsic flexibility is also reflected in isoform-selective inhibitor binding. Fadrozole binds to aldosterone synthase in the R-configuration, using part of the active site cavity pointing toward the egress channel. The structural organization of aldosterone synthase provides critical insights into the molecular mechanism of catalysis and enables rational design of more specific antihypertensive agents. << Less
Mol. Endocrinol. 27:315-324(2013) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2.
Pascoe L., Curnow K.M., Slutsker L., Connell J.M., Speiser P.W., New M.I., White P.C.
Glucocorticoid-suppressible hyperaldosteronism (GSH) is an autosomal dominant form of familial hypertension. The biochemical abnormalities seen in this disorder may be remedied by administration of dexamethasone, implying that aldosterone synthesis is being abnormally regulated by corticotropin. T ... >> More
Glucocorticoid-suppressible hyperaldosteronism (GSH) is an autosomal dominant form of familial hypertension. The biochemical abnormalities seen in this disorder may be remedied by administration of dexamethasone, implying that aldosterone synthesis is being abnormally regulated by corticotropin. The final three steps of aldosterone synthesis, 11 beta- and 18-hydroxylation and 18-oxidation, are mediated by a cytochrome P450 in the zona glomerulosa of the adrenal cortex termed CYP11B2. A related isozyme in the zona fasciculata, CYP11B1, is required for cortisol synthesis; this isozyme, which is normally expressed at much higher levels than CYP11B2, only has 11 beta-hydroxylase activity. These isozymes are encoded by genes on human chromosome 8q22. We have now studied four unrelated patients with GSH. We found that each patient has one chromosome that carries three CYP11B genes instead of two. This has presumably been generated by unequal meiotic crossing-over. The extra gene is a hybrid with 5' regulatory and coding regions corresponding to CYP11B1 and 3' coding regions from CYP11B2. The breakpoint is in intron 2 in two cases, intron 3 in one, and exon 4 in one. Cells transfected with hybrid cDNAs containing up to the first three exons of CYP11B1 synthesized aldosterone at levels near that of cells carrying normal CYP11B2, but cells transfected with hybrids containing the first five or more exons of CYP11B1 could not synthesize detectable amounts of aldosterone. These data demonstrate that GSH is caused by expression of a gene that is regulated like CYP11B1 but that encodes a protein able to synthesize aldosterone. << Less
Proc. Natl. Acad. Sci. U.S.A. 89:8327-8331(1992) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex.
Curnow K.M., Tusie-Luna M.T., Pascoe L., Natarajan R., Gu J.L., Nadler J.L., White P.C.
The steroid 11 beta-hydroxylase (P450c11) enzyme is responsible for the conversion of 11-deoxycortisol to cortisol in the zona fasciculata of the adrenal cortex. Animal studies have suggested that this enzyme or a closely related isozyme is also responsible for the successive 11 beta- and 18-hydro ... >> More
The steroid 11 beta-hydroxylase (P450c11) enzyme is responsible for the conversion of 11-deoxycortisol to cortisol in the zona fasciculata of the adrenal cortex. Animal studies have suggested that this enzyme or a closely related isozyme is also responsible for the successive 11 beta- and 18-hydroxylation and 18-oxidation of deoxycorticosterone required for aldosterone synthesis in the zona glomerulosa. There are two distinct 11 beta-hydroxylase genes in man, CYP11B1 and CYP11B2, which are predicted to encode proteins with 93% amino acid identity. We used a sensitive assay based on the polymerase chain reaction to analyze the expression of the CYP11B1 and B2 genes. Transcripts of CYP11B1 were detected at high levels in surgical specimens of normal adrenals and also in an aldosterone-secreting adrenal tumor. Transcripts of CYP11B2 were found at low levels in normal adrenals, but at a much higher level in the aldosterone-secreting tumor. CYP11B2 mRNA levels were increased in cultured zona glomerulosa cells by physiological levels of angiotensin-II. The entire coding regions of both CYP11B1 and B2 cDNAs were cloned from the tumor mRNA. Expression of these cDNAs in cultured COS-1 cells demonstrated that the CYP11B1 product could only 11 beta-hydroxylate 11-deoxycortisol or deoxycorticosterone, whereas the CYP11B2 product could also 18-hydroxylate cortisol or corticosterone. A small amount of aldosterone was synthesized from deoxycorticosterone only in cells expressing CYP11B2 cDNA. These data demonstrate that the product of CYP11B2 is required for the final steps in the synthesis of aldosterone. << Less
Mol. Endocrinol. 5:1513-1522(1991) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Molecular biology of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11 beta, aldo)].
Okamoto M., Nonaka Y.
The molecular features of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11 beta, aldo)] are discussed. P450(11 beta) is biosynthesized as a precursor form composed of 499 amino acids, having a 24-amino acid extension peptide. Two species of P450(11 beta, aldo) were ... >> More
The molecular features of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11 beta, aldo)] are discussed. P450(11 beta) is biosynthesized as a precursor form composed of 499 amino acids, having a 24-amino acid extension peptide. Two species of P450(11 beta, aldo) were identified; a precursor form of P450(11 beta, aldo)-1 is 510 amino acids long and has a 34-amino acid extension peptide, while that of P450(11 beta, aldo)-2 is 500 amino acids long and has a 24-amino acid extension peptide. The 286th amino acid of P450(11 beta, aldo)-1 is Glu, while that of P450(11 beta, aldo)-2 is Lys. The cDNA-expression studies showed that P450(11 beta, aldo)-1 had the aldosterone producing activity whereas P450(11 beta, aldo)-2 had no activity, suggesting that Glu286 of P450(11 beta, aldo) plays an important role in the catalysis. The amino acid sequence of a region in P450(11 beta) from Leu337 through Pro352 is highly conserved among the steroidogenic P450s. Functional expression studies on the cDNAs for two P450(11 beta)s showed that P450(11 beta) catalyzes the 11 beta-, 18- and 19-hydroxylations of 11-deoxycorticosterone, but not the aldosterone synthesis. P450(11 beta, aldo), on the other hand, catalyzes the conversion of 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone and aldosterone. The two P450(11 beta)s were also shown to catalyze the conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol and cortisone. << Less
J. Steroid Biochem. Mol. Biol. 41:415-419(1992) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Purification and functional characterization of human 11beta hydroxylase expressed in Escherichia coli.
Zoellner A., Kagawa N., Waterman M.R., Nonaka Y., Takio K., Shiro Y., Hannemann F., Bernhardt R.
The human 11beta-hydroxylase (hCYP11B1) is responsible for the conversion of 11-deoxycortisol into the major mammalian glucocorticoid, cortisol. The reduction equivalents needed for this reaction are provided via a short electron transfer chain consisting of a [2Fe-2S] ferredoxin and a FAD-contain ... >> More
The human 11beta-hydroxylase (hCYP11B1) is responsible for the conversion of 11-deoxycortisol into the major mammalian glucocorticoid, cortisol. The reduction equivalents needed for this reaction are provided via a short electron transfer chain consisting of a [2Fe-2S] ferredoxin and a FAD-containing reductase. On the biochemical and biophysical level, little is known about hCYP11B1 because it is very unstable for analyses performed in vitro. This instability is also the reason why it has not been possible to stably express it so far in Escherichia coli and subsequently purify it. In the present study, we report on the successful and reproducible purification of recombinant hCYP11B1 coexpressed with molecular chaperones GroES/GroEL in E. coli. The protein was highly purified to apparent homogeneity, as observed by SDS/PAGE. Upon mass spectrometry, the mass-to-charge ratio (m/z) of the protein was estimated to be 55 761, which is consistent with the value 55 760.76 calculated for the form lacking the translational initiator Met. The functionality of hCYP11B1 was analyzed using different methods (substrate conversion assays, stopped-flow, Biacore). The results clearly demonstrate that the enzyme is capable of hydroxylating its substrates at position 11-beta. Moreover, the determined NADPH coupling percentage for the hCYP11B1 catalyzed reactions using either 11-deoxycortisol or 11-deoxycorticosterone as substrates was approximately 75% in both cases. Biacore and stopped-flow measurements indicate that hCYP11B1 possesses more than one binding site for its redox partner adrenodoxin, possibly resulting in the formation of more than one productive complexes. In addition, we performed CD measurements to obtain information about the structure of hCYP11B1. << Less
FEBS J. 275:799-810(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Modulation of steroid hydroxylase activity in stably transfected V79MZh11B1 and V79MZh11B2 cells by PKC and PKD inhibitors.
Bureik M., Zeeh A., Bernhardt R.
We recently observed that treatment of CYP11B2-expressing COS-1 cells with the broad range kinase inhibitor, staurosporine (STS), strongly inhibited aldosterone biosynthesis, indicating that the activity of a kinase might be a prerequisite for steroid hydroxylase activity. In an attempt to identif ... >> More
We recently observed that treatment of CYP11B2-expressing COS-1 cells with the broad range kinase inhibitor, staurosporine (STS), strongly inhibited aldosterone biosynthesis, indicating that the activity of a kinase might be a prerequisite for steroid hydroxylase activity. In an attempt to identify such kinases, we measured conversion of 11-deoxycortisol (RSS) and 11-deoxycorticosterone (DOC) by V79MZh11B1 and V79MZh11B2 cells, respectively, in the presence of STS and also after treatment with the kinase inhibitors chelerythrine, rottlerin and Gö 6976. The conversion of both substrates by both cell lines was affected in a selective manner by the kinase inhibitors, suggesting that the activity of the novel PKC-delta and either of conventional PKCs or of PKD alter steroid hydroxylation activity, with their influence depending on both the cytochrome P450 tested and on its steroid substrate. << Less
Endocr. Res. 28:351-355(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.