Reaction participants Show >> << Hide
- Name help_outline (3Z)-octenoyl-CoA Identifier CHEBI:85640 Charge -4 Formula C29H44N7O17P3S InChIKeyhelp_outline CSCVMTFVEARIET-IJKSGAABSA-J SMILEShelp_outline CCCC\C=C/CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-octenoyl-CoA Identifier CHEBI:62242 Charge -4 Formula C29H44N7O17P3S InChIKeyhelp_outline CPSDNAXXKWVYIY-NTLMCJQISA-J SMILEShelp_outline CCCCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:46044 | RHEA:46045 | RHEA:46046 | RHEA:46047 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Delta 3, delta 2-enoyl-CoA isomerase is the protein that copurifies with human glutathione S-transferases from S-hexylglutathione affinity matrices.
Takahashi Y., Hirata Y., Burstein Y., Listowsky I.
An unidentified 30 kDa protein frequently copurifies with human glutathione S-transferases from S-hexyl-glutathione affinity matrices. Application of two-step sequential affinity chromatographic methods yielded a homogeneous preparation of that protein from human liver specimens. The protein was d ... >> More
An unidentified 30 kDa protein frequently copurifies with human glutathione S-transferases from S-hexyl-glutathione affinity matrices. Application of two-step sequential affinity chromatographic methods yielded a homogeneous preparation of that protein from human liver specimens. The protein was digested with Achromobacter protease I, and sequences of peptides resolved by h.p.l.c. showed a high degree of identity with those of rat mitochondrial delta 3, delta 2-enoyl-CoA isomerase. The human protein also exhibited catalytic activity with delta 3-cis-octenyl CoA as a substrate. Thus it is identified as liver delta 3, delta 2-enoyl-CoA isomerase. << Less
-
Functional characterization of delta3,delta2-enoyl-CoA isomerases from rat liver.
Zhang D., Yu W., Geisbrecht B.V., Gould S.J., Sprecher H., Schulz H.
The degradation of unsaturated fatty acids by beta-oxidation involves Delta(3),Delta(2)-enoyl-CoA isomerases (enoyl-CoA isomerases) that catalyze 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of enoyl-CoAs and the 2,5 --> 3,5 isomerization of dienoyl-CoAs. An analysis of rat liver enoyl ... >> More
The degradation of unsaturated fatty acids by beta-oxidation involves Delta(3),Delta(2)-enoyl-CoA isomerases (enoyl-CoA isomerases) that catalyze 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of enoyl-CoAs and the 2,5 --> 3,5 isomerization of dienoyl-CoAs. An analysis of rat liver enoyl-CoA isomerases revealed the presence of a monofunctional enoyl-CoA isomerase (ECI) in addition to mitochondrial enoyl-CoA isomerase (MECI) in mitochondria, whereas peroxisomes contain ECI and multifunctional enzyme 1 (MFE1). Thus ECI, which previously had been described as peroxisomal enoyl-CoA isomerase, was found to be present in both peroxisomes and mitochondria. This enzyme seems to be identical with mitochondrial long-chain enoyl-CoA isomerase (Kilponen, J.M., Palosaari, P.M., and Hiltunen, J.K. 1990. Biochem. J. 269, 223-226). All three hepatic enoyl-CoA isomerases have broad chain length specificities but are distinguishable by their preferences for one of the three isomerization reactions. MECI is most active in catalyzing the 3-cis --> 2-trans isomerization; ECI has a preference for the 3-trans --> 2-trans isomerization, and MFE1 is the optimal isomerase for the 2,5 --> 3,5 isomerization. A functional characterization based on substrate specificities and total enoyl-CoA isomerase activities in rat liver leads to the conclusion that the 3-cis --> 2-trans and 2,5 --> 3,5 isomerizations in mitochondria are catalyzed overwhelmingly by MECI, whereas ECI contributes significantly to the 3-trans --> 2-trans isomerization. In peroxisomes, ECI is predicted to be the dominant enzyme for the 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of long-chain intermediates, whereas MFE1 is the key enzyme in the 2,5 --> 3,5 isomerization. << Less
J. Biol. Chem. 277:9127-9132(2002) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Characterization of PECI, a novel monofunctional D3,D2-enoyl-CoA isomerase of mammalian peroxisomes.
Geisbrecht B.V., Zhang D., Schulz H., Gould S.J.
We report here the identification and characterization of human and mouse PECI, a novel gene that encodes a monofunctional peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase. Human and mouse PECI were identified on the basis of their sequence similarity to Eci1p, a recently characterized peroxisoma ... >> More
We report here the identification and characterization of human and mouse PECI, a novel gene that encodes a monofunctional peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase. Human and mouse PECI were identified on the basis of their sequence similarity to Eci1p, a recently characterized peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase from the yeast Saccharomyces cerevisiae. Cloning and sequencing of the human PECI cDNA revealed the presence of a 1077-base pair open reading frame predicted to encode a 359-amino acid protein with a mass of 39.6 kDa. The corresponding mouse cDNA contains a 1074-base pair open reading frame that encodes a 358-amino acid-long protein with a deduced mass of 39.4 kDa. Northern blot analysis demonstrated human PECI mRNA is expressed in all tissues. A bacterially expressed form of human PECI catalyzed the isomerization of 3-cis-octenoyl-CoA to 2-trans-octenoyl-CoA with a specific activity of 27 units/mg of protein. The human and mouse PECI proteins contain type-1 peroxisomal targeting signals, and human PECI was localized to peroxisomes by both subcellular fractionation and immunofluorescence microscopy techniques. The potential roles for this monofunctional Delta(3),Delta(2)-enoyl-CoA isomerase in peroxisomal metabolism are discussed. << Less