Enzymes
UniProtKB help_outline | 9 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1,2-dioctanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,5-bisphosphate) Identifier CHEBI:85342 Charge -5 Formula C25H44O19P3 InChIKeyhelp_outline QXHVLVSULWMTCV-DICZBTHZSA-I SMILEShelp_outline CCCCCCCC(=O)OC[C@H](COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H]1O)OC(=O)CCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2-dioctanoyl-sn-glycero-3-phospho-(1D-myo-inositol-5-phosphate) Identifier CHEBI:78911 Charge -3 Formula C25H45O16P2 InChIKeyhelp_outline LKXJHTKDXMQMDM-DICZBTHZSA-K SMILEShelp_outline CCCCCCCC(=O)OC[C@H](COP([O-])(=O)O[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@H](OP([O-])([O-])=O)[C@H]1O)OC(=O)CCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45632 | RHEA:45633 | RHEA:45634 | RHEA:45635 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases.
Schaletzky J., Dove S.K., Short B., Lorenzo O., Clague M.J., Barr F.A.
Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTM ... >> More
Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2. We have investigated MTM1 and MTMR6 and find that they use PtdIns(3,5)P2 in addition to PtdIns3P as a substrate in vitro. The product of PtdIns(3,5)P2 hydrolysis, PtdIns5P, causes MTM1 to form a heptameric ring that is 12.5 nm in diameter, and it is a specific allosteric activator of MTM1, MTMR3, and MTMR6. A disease-causing mutation at arginine 69 of MTM1 falling within a putative pleckstrin homology domain reduces the ability of the enzyme to respond to PtdIns5P. We propose that the myotubularin family of enzymes utilize both PtdIns3P and PtdIns(3,5)P2 as substrates, and that PtdIns5P functions in a positive feedback loop controlling their activity. These findings highlight the importance of regulated phosphatase activity for the control of phosphoinositide metabolism. << Less
Curr. Biol. 13:504-509(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Endosomal targeting of the phosphoinositide 3-phosphatase MTMR2 is regulated by an N-terminal phosphorylation site.
Franklin N.E., Taylor G.S., Vacratsis P.O.
MTMR2 is a member of the myotubularin family of inositol lipid phosphatases, a large protein-tyrosine phosphatase subgroup that is conserved from yeast to humans. Furthermore, the peripheral neuromuscular disease Charcot-Marie Tooth disease type 4B has been attributed to mutations in the mtmr2 gen ... >> More
MTMR2 is a member of the myotubularin family of inositol lipid phosphatases, a large protein-tyrosine phosphatase subgroup that is conserved from yeast to humans. Furthermore, the peripheral neuromuscular disease Charcot-Marie Tooth disease type 4B has been attributed to mutations in the mtmr2 gene. Because the molecular mechanisms regulating MTMR2 have been poorly defined, we investigated whether reversible phosphorylation might regulate MTMR2 function. We used mass spectrometry-based methods to identify a high stoichiometry phosphorylation site on serine 58 of MTMR2. Phosphorylation at Ser(58), or a phosphomimetic S58E mutation, markedly decreased MTMR2 localization to endocytic vesicular structures. In contrast, a phosphorylation-deficient MTMR2 mutant (S58A) displayed constitutive localization to early endocytic structures. This localization pattern was accompanied by displacement of a PI(3)P-specific sensor protein and an increase in signal transduction pathways. Thus, MTMR2 phosphorylation is likely to be a critical mechanism by which MTMR2 access to its lipid substrate(s) is temporally and spatially regulated, thereby contributing to the control of downstream endosome maturation events. << Less
J. Biol. Chem. 286:15841-15853(2011) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.