Enzymes
UniProtKB help_outline | 2,458 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 3-hydroxybutanoyl-CoA Identifier CHEBI:78611 Charge -4 Formula C25H38N7O18P3S InChIKeyhelp_outline QHHKKMYHDBRONY-RMNRSTNRSA-J SMILEShelp_outline CC(O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-butenoyl-CoA Identifier CHEBI:57332 Charge -4 Formula C25H36N7O17P3S InChIKeyhelp_outline KFWWCMJSYSSPSK-PAXLJYGASA-J SMILEShelp_outline C\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45584 | RHEA:45585 | RHEA:45586 | RHEA:45587 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue.
Mueller-Newen G., Janssen U., Stoffel W.
Mitochondrial 2-enoyl-CoA hydratase (mECH) and 3,2-trans-enoyl-CoA isomerase (mECI), two enzymes which catalyze totally different reactions in fatty acid beta-oxidation, belong to the low-similarity hydratase/isomerase enzyme superfamily. Their substrates and reaction mechanisms are similar [Mülle ... >> More
Mitochondrial 2-enoyl-CoA hydratase (mECH) and 3,2-trans-enoyl-CoA isomerase (mECI), two enzymes which catalyze totally different reactions in fatty acid beta-oxidation, belong to the low-similarity hydratase/isomerase enzyme superfamily. Their substrates and reaction mechanisms are similar [Müller-Newen, G. & Stoffel, W. (1993) Biochemistry 32, 11,405-11,412]. Glu164 of mECH is the only amino acid with a protic side chain that is conserved in these monofunctional and polyfunctional enzymes with 2-enoyl-CoA hydratase and 3,2-trans-enoyl-CoA isomerase activities. We tested our hypothesis that Glu164 of mECH is the putative active-site amino acid responsible for the base-catalyzed alpha-deprotonation in the hydratase/dehydrase and isomerase reaction. We functionally expressed rat liver mECH wild-type and [E164Q] mutant enzymes in Escherichia coli. Characterization of the purified wild-type and mutant enzymes revealed that the replacement of Glu164 by Gln lowers the kcat value more than 100,000-fold, whereas the Km value is only moderately affected. We have demonstrated in a previous study that Glu165 is indispensable for the 3,2-trans-enoyl-CoA isomerase activity. Taking these results together, we conclude that the conserved glutamic acid is the essential basic group in the active sites of 2-enoyl-CoA hydratase (Glu164) and 3,2-trans-enoyl-CoA isomerase (Glu165), and that these enzymes are not only evolutionarily but also functionally and mechanistically related. << Less
-
Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis.
Liu S., Yu H., Liu Y., Liu X., Zhang Y., Bu C., Yuan S., Chen Z., Xie G., Li W., Xu B., Yang J., He L., Jin T., Xiong Y., Sun L., Liu X., Han C., Cheng Z., Liang J., Shang Y.
Lysine crotonylation (Kcr) is a newly identified histone modification that is associated with active transcription in mammalian cells. Here we report that the chromodomain Y-like transcription corepressor CDYL negatively regulates histone Kcr by acting as a crotonyl-CoA hydratase to convert croton ... >> More
Lysine crotonylation (Kcr) is a newly identified histone modification that is associated with active transcription in mammalian cells. Here we report that the chromodomain Y-like transcription corepressor CDYL negatively regulates histone Kcr by acting as a crotonyl-CoA hydratase to convert crotonyl-CoA to β-hydroxybutyryl-CoA. We showed that the negative regulation of histone Kcr by CDYL is intrinsically linked to its transcription repression activity and functionally implemented in the reactivation of sex chromosome-linked genes in round spermatids and genome-wide histone replacement in elongating spermatids. Significantly, Cdyl transgenic mice manifest dysregulation of histone Kcr and reduction of male fertility with a decreased epididymal sperm count and sperm cell motility. Our study uncovers a biochemical pathway in the regulation of histone Kcr and implicates CDYL-regulated histone Kcr in spermatogenesis, adding to the understanding of the physiology of male reproduction and the mechanism of the spermatogenic failure in AZFc (Azoospermia Factor c)-deleted infertile men. << Less
-
Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion.
Yamada K., Aiba K., Kitaura Y., Kondo Y., Nomura N., Nakamura Y., Fukushi D., Murayama K., Shimomura Y., Pitt J., Yamaguchi S., Yokochi K., Wakamatsu N.
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been ... >> More
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been determined. The objective of this report is to characterise ECHS1 and a mild form of its deficiency biochemically, and to determine the candidate metabolic product that can be efficiently used for neonatal diagnosis.<h4>Methods</h4>We conducted a detailed clinical, molecular genetics, biochemical and metabolic analysis of sibling patients with ECHS1 deficiency. Moreover, we purified human ECHS1, and determined the substrate specificity of ECHS1 for five substrates via different metabolic pathways.<h4>Results</h4>Human ECHS1 catalyses the hydration of five substrates via different metabolic pathways, with the highest specificity for crotonyl-CoA and the lowest specificity for tiglyl-CoA. The patients had relatively high (∼7%) residual ECHS1 enzyme activity for crotonyl-CoA and methacrylyl-CoA caused by the compound heterozygous mutations (c.176A>G, (p.N59S) and c.413C>T, (p.A138V)) with normal mitochondrial complex I-IV activities. Affected patients excrete large amounts of N-acetyl-S-(2-carboxypropyl)cysteine, a metabolite of methacrylyl-CoA.<h4>Conclusions</h4>Laboratory data and clinical features demonstrated that the patients have a mild form of ECHS1 deficiency harbouring defective valine catabolic and β-oxidation pathways. N-Acetyl-S-(2-carboxypropyl) cysteine level was markedly high in the urine of the patients, and therefore, N-acetyl-S-(2-carboxypropyl)cysteine was regarded as a candidate metabolite for the diagnosis of ECHS1 deficiency. This metabolite is not part of current routine metabolic screening protocols, and its inclusion, therefore, holds immense potential in accurate diagnosis. << Less
J. Med. Genet. 52:691-698(2015) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli.
Elssner T., Engemann C., Baumgart K., Kleber H.-P.
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrop ... >> More
Two proteins (CaiB and CaiD) were found to catalyze the reversible biotransformation of crotonobetaine to L-carnitine in Escherichia coli in the presence of a cosubstrate (e.g., gamma-butyrobetainyl-CoA or crotonobetainyl-CoA). CaiB (45 kDa) and CaiD (27 kDa) were purified in two steps to electrophoretic homogeneity from overexpression strains. CaiB was identified as crotonobetainyl-CoA:carnitine CoA-transferase by MALDI-TOF mass spectrometry and enzymatic assays. The enzyme exhibits high cosubstrate specificity to CoA derivatives of trimethylammonium compounds. In particular, the N-terminus of CaiB shows significant identity with other CoA-transferases (e.g., FldA from Clostridium sporogenes, Frc from Oxalobacter formigenes, and BbsE from Thauera aromatica) and CoA-hydrolases (e.g., BaiF from Eubacterium sp.). CaiD was shown to be a crotonobetainyl-CoA hydratase using MALDI-TOF mass spectrometry and enzymatic assays. Besides crotonobetainyl-CoA CaiD is also able to hydrate crotonyl-CoA with a significantly lower Vmax (factor of 10(3)) but not crotonobetaine. The substrate specificity of CaiD and its homology to the crotonase confirm this enzyme as a new member of the crotonase superfamily. Concluding these results, it was verified that hydration of crotonobetaine to L-carnitine proceeds at the CoA level in two steps: the CaiD catalyzed hydration of crotonobetainyl-CoA to L-carnitinyl-CoA, followed by a CoA transfer from L-carnitinyl-CoA to crotonobetaine, catalyzed by CaiB. When gamma-butyrobetainyl-CoA was used as a cosubstrate (CoA donor), the first reaction is the CoA transfer. The optimal ratios of CaiB and CaiD during this hydration reaction, determined to be 4:1 when crotonobetainyl-CoA was used as cosubstrate and 5:1 when gamma-butyrobetainyl-CoA was used as cosubstrate, are different from that found for in vivo conditions (1:3). << Less
Biochemistry 40:11140-11148(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.