Reaction participants Show >> << Hide
- Name help_outline 7,8-dihydroneopterin Identifier CHEBI:17001 (Beilstein: 7096689,8572370,2291612; CAS: 1218-98-0) help_outline Charge 0 Formula C9H13N5O4 InChIKeyhelp_outline YQIFAMYNGGOTFB-XINAWCOVSA-N SMILEShelp_outline Nc1nc2NCC(=Nc2c(=O)[nH]1)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 7,8-dihydroxanthopterin Identifier CHEBI:85130 Charge 0 Formula C6H7N5O2 InChIKeyhelp_outline WBZKQFAVPDYTLF-UHFFFAOYSA-N SMILEShelp_outline NC1=NC(=O)C2NC(=O)CNC2=N1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (Beilstein: 1901205; CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 97 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycolaldehyde Identifier CHEBI:17071 (Beilstein: 506029; CAS: 141-46-8) help_outline Charge 0 Formula C2H4O2 InChIKeyhelp_outline WGCNASOHLSPBMP-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45332 | RHEA:45333 | RHEA:45334 | RHEA:45335 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
One substrate, five products: reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis.
Czekster C.M., Blanchard J.S.
Tetrahydrofolate cofactors are required for one carbon transfer reaction involved in the synthesis of purines, amino acids, and thymidine. Inhibition of tetrahydrofolate biosynthesis is a powerful therapeutic strategy in the treatment of several diseases, and the possibility of using antifolates t ... >> More
Tetrahydrofolate cofactors are required for one carbon transfer reaction involved in the synthesis of purines, amino acids, and thymidine. Inhibition of tetrahydrofolate biosynthesis is a powerful therapeutic strategy in the treatment of several diseases, and the possibility of using antifolates to inhibit enzymes from Mycobacterium tuberculosis has been explored. This work focuses on the study of the first enzyme in tetrahydrofolate biosynthesis that is unique to bacteria, dihydroneopterin aldolase (MtDHNA). This enzyme requires no metals or cofactors and does not form a protein-mediated Schiff base with the substrate, unlike most aldolases. Here, we were able to demonstrate that the reaction catalyzed by MtDHNA generates three different pterin products, one of which is not produced by other wild-type DHNAs. The enzyme-substrate complex partitions 51% in the first turnover to form the aldolase products, 24% to the epimerase product and 25% to the oxygenase products. The aldolase reaction is strongly pH dependent, and apparent pK(a) values were obtained for the first time for this class of enzyme. Furthermore, chemistry is rate limiting for the aldolase reaction, and the analysis of solvent kinetic isotope effects in steady-state and pre-steady-state conditions, combined with proton inventory studies, revealed that two protons and a likely solvent contribution are involved in formation and breakage of a common intermediate. This study provides information about the plasticity required from a catalyst that possesses high substrate specificity while being capable of utilizing two distinct epimers with the same efficiency to generate five distinct products. << Less
J. Am. Chem. Soc. 134:19758-19771(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.