Reaction participants Show >> << Hide
- Name help_outline 7,8-dihydroneopterin Identifier CHEBI:17001 (Beilstein: 2291612,7096689,8572370; CAS: 1218-98-0) help_outline Charge 0 Formula C9H13N5O4 InChIKeyhelp_outline YQIFAMYNGGOTFB-XINAWCOVSA-N SMILEShelp_outline Nc1nc2NCC(=Nc2c(=O)[nH]1)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 7,8-dihydromonapterin Identifier CHEBI:71175 Charge 0 Formula C9H13N5O4 InChIKeyhelp_outline YQIFAMYNGGOTFB-NJGYIYPDSA-N SMILEShelp_outline Nc1nc2NCC(=Nc2c(=O)[nH]1)[C@H](O)[C@@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45328 | RHEA:45329 | RHEA:45330 | RHEA:45331 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Biosynthesis of pteridines in Escherichia coli. Structural and mechanistic similarity of dihydroneopterin-triphosphate epimerase and dihydroneopterin aldolase.
Haussmann C., Rohdich F., Schmidt E., Bacher A., Richter G.
An open reading frame located at 69.0 kilobases on the Escherichia coli chromosome was shown to code for dihydroneopterin aldolase, catalyzing the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the biosynthetic pathway of tetrahydrofolate. The gene was subsequently desi ... >> More
An open reading frame located at 69.0 kilobases on the Escherichia coli chromosome was shown to code for dihydroneopterin aldolase, catalyzing the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin in the biosynthetic pathway of tetrahydrofolate. The gene was subsequently designated folB. The FolB protein shows 30% identity to the paralogous dihydroneopterin-triphosphate epimerase, which is specified by the folX gene located at 2427 kilobases on the E. coli chromosome. The folX and folB gene products were both expressed to high yield in recombinant E. coli strains, and the recombinant proteins were purified to homogeneity. Both enzymes form homo-octamers. Aldolase can use L-threo-dihydroneopterin and D-erythro-dihydroneopterin as substrates for the formation of 6-hydroxymethyldihydropterin, but it can also catalyze the epimerization of carbon 2' of dihydroneopterin and dihydromonapterin at appreciable velocity. Epimerase catalyzes the epimerization of carbon 2' in the triphosphates of dihydroneopterin and dihydromonapterin. However, the enzyme can also catalyze the cleavage of the position 6 side chain of several pteridine derivatives at a slow rate. Steady-state kinetic parameters are reported for the various enzyme-catalyzed reactions. We propose that the polarization of the 2'-hydroxy group of the substrate could serve as the initial reaction step for the aldolase as well as for the epimerase activity. A deletion mutant obtained by targeting the folX gene of E. coli has normal growth properties on complete medium as well as on minimal medium. Thus, the physiological role of the E. coli epimerase remains unknown. The open reading frame ygiG of Hemophilus influenzae specifies a protein with the catalytic properties of an aldolase. However, the genome of H. influenzae does not specify a dihydroneopterin-triphosphate epimerase. << Less
J. Biol. Chem. 273:17418-17424(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
One substrate, five products: reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis.
Czekster C.M., Blanchard J.S.
Tetrahydrofolate cofactors are required for one carbon transfer reaction involved in the synthesis of purines, amino acids, and thymidine. Inhibition of tetrahydrofolate biosynthesis is a powerful therapeutic strategy in the treatment of several diseases, and the possibility of using antifolates t ... >> More
Tetrahydrofolate cofactors are required for one carbon transfer reaction involved in the synthesis of purines, amino acids, and thymidine. Inhibition of tetrahydrofolate biosynthesis is a powerful therapeutic strategy in the treatment of several diseases, and the possibility of using antifolates to inhibit enzymes from Mycobacterium tuberculosis has been explored. This work focuses on the study of the first enzyme in tetrahydrofolate biosynthesis that is unique to bacteria, dihydroneopterin aldolase (MtDHNA). This enzyme requires no metals or cofactors and does not form a protein-mediated Schiff base with the substrate, unlike most aldolases. Here, we were able to demonstrate that the reaction catalyzed by MtDHNA generates three different pterin products, one of which is not produced by other wild-type DHNAs. The enzyme-substrate complex partitions 51% in the first turnover to form the aldolase products, 24% to the epimerase product and 25% to the oxygenase products. The aldolase reaction is strongly pH dependent, and apparent pK(a) values were obtained for the first time for this class of enzyme. Furthermore, chemistry is rate limiting for the aldolase reaction, and the analysis of solvent kinetic isotope effects in steady-state and pre-steady-state conditions, combined with proton inventory studies, revealed that two protons and a likely solvent contribution are involved in formation and breakage of a common intermediate. This study provides information about the plasticity required from a catalyst that possesses high substrate specificity while being capable of utilizing two distinct epimers with the same efficiency to generate five distinct products. << Less
J. Am. Chem. Soc. 134:19758-19771(2012) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.