Enzymes
UniProtKB help_outline | 8 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:72999 (CAS: 63-89-8,2644-64-6) help_outline Charge 0 Formula C40H80NO8P InChIKeyhelp_outline KILNVBDSWZSGLL-KXQOOQHDSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2-dihexadecanoyl-sn-glycerol Identifier CHEBI:82929 (CAS: 30334-71-5) help_outline Charge 0 Formula C35H68O5 InChIKeyhelp_outline JEJLGIQLPYYGEE-XIFFEERXSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCCCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphocholine Identifier CHEBI:295975 Charge -1 Formula C5H13NO4P InChIKeyhelp_outline YHHSONZFOIEMCP-UHFFFAOYSA-M SMILEShelp_outline C[N+](C)(C)CCOP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 35 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45304 | RHEA:45305 | RHEA:45306 | RHEA:45307 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages.
Bakala N'goma J.C., Schue M., Carriere F., Geerlof A., Canaan S.
Phospholipase Cs (PLCs) contribute importantly to the virulence and pathogenicity of several bacteria. It has been reported in previous studies that mutations in the four predicted plc genes of Mycobacterium tuberculosis inhibit the growth of these bacteria during the late phase of infection in mi ... >> More
Phospholipase Cs (PLCs) contribute importantly to the virulence and pathogenicity of several bacteria. It has been reported in previous studies that mutations in the four predicted plc genes of Mycobacterium tuberculosis inhibit the growth of these bacteria during the late phase of infection in mice. These enzymes have not yet been fully characterised, mainly because they are not easy to produce in large quantities. With a view to elucidating the role of all Mycobacterium tuberculosis phospholipase Cs (PLC-A, PLC-B, PLC-C and PLC-D), a large amount of active, soluble recombinant PLCs, were expressed and purified using Mycobacterium smegmatis as expression system. These enzymes showed different pH activity profiles. PLC-C was found to be the most active of the four recombinant PLCs under acidic conditions. All the enzymes tested induced cytotoxic effects on mouse macrophage RAW 264.7 cell lines, via direct or indirect enzymatic hydrolysis of cell membrane phospholipids. These results open new prospects for characterising biochemical and structural features of Mycobacterium tuberculosis PLCs, which might lead to the identification of novel anti-tuberculosis drug targets. All mycobacterial phospholipase Cs can now be studied in order to determine their role in the virulence and pathogenicity of bacteria of this kind. << Less
Biochim. Biophys. Acta 1801:1305-1313(2010) [PubMed] [EuropePMC]
-
Hydrolysis of sphingosylphosphocholine by neutral sphingomyelinases.
Miura Y., Gotoh E., Nara F., Nishijima M., Hanada K.
Sphingosylphosphocholine (SPC), the N-deacylated form of sphingomyelin (SM), is a naturally occurring lipid mediator. However, little is known about the metabolism of SPC. We here report an in vitro assay system for SPC-phospholipase C (PLC). Using this assay system, we demonstrated that nSMase1 a ... >> More
Sphingosylphosphocholine (SPC), the N-deacylated form of sphingomyelin (SM), is a naturally occurring lipid mediator. However, little is known about the metabolism of SPC. We here report an in vitro assay system for SPC-phospholipase C (PLC). Using this assay system, we demonstrated that nSMase1 and nSMase2, human neutral sphingomyelinases (SMases), are capable of hydrolyzing SPC efficiently under detergent-free conditions. Bacterial and plasmodial neutral SMases also showed SPC-PLC activity. The substrate specificity of neutral SMases that hydrolyze SM, SPC, and monoradyl glycerophosphocholine, but not diradyl glycerophosphocholine, suggested that a hydrogen-bond donor at the C-2 or sn-2 position in the substrate is required for recognition by the enzymes. << Less
FEBS Lett. 557:288-292(2004) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.
Oninla V.O., Breiden B., Babalola J.O., Sandhoff K.
During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular chole ... >> More
During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. << Less
J. Lipid Res. 55:2606-2619(2014) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.