Reaction participants Show >> << Hide
- Name help_outline a (2E,4Z)-dienoyl-CoA Identifier CHEBI:85099 Charge -4 Formula C26H35N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\C=C/[*] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 4,5-saturated-(2E)-enoyl-CoA Identifier CHEBI:85100 Charge -4 Formula C26H37N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\CC[*] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45232 | RHEA:45233 | RHEA:45234 | RHEA:45235 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
2,4-Dienoyl coenzyme A reductases from bovine liver and Escherichia coli. Comparison of properties.
Dommes V., Kunau W.H.
2,4-Dienoyl-CoA reductases, enzymes of the beta-oxidation of unsaturated fatty acids which were purified from bovine liver and oleate-induced cells of Escherichia coli, revealed very similar substrate specificities but distinctly different molecular properties. The subunit molecular weights, estim ... >> More
2,4-Dienoyl-CoA reductases, enzymes of the beta-oxidation of unsaturated fatty acids which were purified from bovine liver and oleate-induced cells of Escherichia coli, revealed very similar substrate specificities but distinctly different molecular properties. The subunit molecular weights, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 32,000 and 73,000 for the mammalian and the bacterial enzyme, respectively. The native molecular weights, calculated from sedimentation coefficients and Stokes radii yielded 124,000 for the bovine liver and 70,000 for the bacterial enzyme. Thus, bovine liver 2,4-dienoyl-CoA reductase is a tetramer consisting of four identical subunits. The E. coli 2,4-dienoyl-CoA reductase, however, possesses a monomeric structure. The latter enzyme contains 1 mol of FAD/mol of enzyme, whereas the former reductase is not a flavoprotein. The bovine liver reductase reduced 2-trans, 4-cis- and 2-trans,4-trans-decadienoyl-CoA to 3-trans-decenoyl-CoA. The E. coli reductase catalyzed the reduction of the same two substrates but in contrast yielded 2-trans-decenoyl-CoA as reaction product. Certain other properties of the two 2,4-dienoyl-CoA reductases are also presented. The localization of the reductase step within the degradation pathway of 4-cis-decenoyl-CoA, a metabolite of linoleic acid, is discussed. << Less
J. Biol. Chem. 259:1781-1788(1984) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterisation of human peroxisomal 2,4-dienoyl-CoA reductase.
De Nys K., Meyhi E., Mannaerts G.P., Fransen M., Van Veldhoven P.P.
Based on the primary structure of the rat peroxisomal 2,4-dienoyl-CoA reductase (M. Fransen, P.P. Van Veldhoven, S. Subramani, Biochem. J. 340 (1999) 561-568), the cDNA of the human counterpart was cloned. It contained an open reading frame of 878 bases encoding a protein of 291 amino acids (calcu ... >> More
Based on the primary structure of the rat peroxisomal 2,4-dienoyl-CoA reductase (M. Fransen, P.P. Van Veldhoven, S. Subramani, Biochem. J. 340 (1999) 561-568), the cDNA of the human counterpart was cloned. It contained an open reading frame of 878 bases encoding a protein of 291 amino acids (calculated molecular mass 30778 Da), being 83% identical to the rat reductase. The gene, encompassing nine exons, is located at chromosome 16p13. Bacterially expressed poly(His)-tagged reductase was active not only towards short and medium chain 2,4-dienoyl-CoAs, but also towards 2,4,7,10,13,16,19-docosaheptaenoyl-CoA. Hence, the reductase does not seem to constitute a rate limiting step in the peroxisomal degradation of docosahexaenoic acid. The reduction of docosaheptaenoyl-CoA, however, was severely decreased in the presence of albumin. << Less
Biochim. Biophys. Acta 1533:66-72(2001) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.