Reaction participants Show >> << Hide
- Name help_outline 5,6,7,8-tetrahydrosarcinapterin Identifier CHEBI:59924 Charge -4 Formula C35H48N7O19P InChIKeyhelp_outline DOMRFGVDYQUXCH-HXBMNFMZSA-J SMILEShelp_outline [H][C@]1(Nc2c(N[C@H]1C)nc(N)[nH]c2=O)[C@@H](C)Nc1ccc(C[C@H](O)[C@H](O)[C@H](O)CO[C@H]2O[C@H](COP([O-])(=O)O[C@@H](CCC([O-])=O)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)[C@@H](O)[C@H]2O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
methyl-Co(III)-[corrinoid Fe-S protein]
Identifier
RHEA-COMP:11111
Reactive part
help_outline
- Name help_outline methyl-Co(III) Identifier CHEBI:85035 Charge 2 Formula CH3Co InChIKeyhelp_outline YMTZLGGIBUNCMX-UHFFFAOYSA-N SMILEShelp_outline C[Co++] 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-methyltetrahydrosarcinapterin Identifier CHEBI:64267 Charge -4 Formula C36H50N7O19P InChIKeyhelp_outline DVZXLRSUEMKBID-XVKAKHOPSA-J SMILEShelp_outline [H][C@]1([C@@H](C)Nc2ccc(C[C@H](O)[C@H](O)[C@H](O)CO[C@H]3O[C@H](COP([O-])(=O)O[C@@H](CCC([O-])=O)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)[C@@H](O)[C@H]3O)cc2)[C@H](C)Nc2nc(N)[nH]c(=O)c2N1C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Co(I)-[corrinoid Fe-S protein]
Identifier
RHEA-COMP:11110
Reactive part
help_outline
- Name help_outline Co+ Identifier CHEBI:85033 (CAS: 16610-75-6) help_outline Charge 1 Formula Co InChIKeyhelp_outline BFVNPAKTAJENJQ-UHFFFAOYSA-N SMILEShelp_outline [Co+] 2D coordinates Mol file for the small molecule Search links Involved in 32 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:45196 | RHEA:45197 | RHEA:45198 | RHEA:45199 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila.
Maupin-Furlow J., Ferry J.G.
The CO dehydrogenase enzyme complex from Methanosarcina thermophila contains a corrinoid/iron-sulfur enzyme composed of two subunits (delta and gamma). The cdhD and cdhE genes, which encode the delta and gamma subunits, respectively, were cloned and sequenced. The cdhD gene is upstream of and sepa ... >> More
The CO dehydrogenase enzyme complex from Methanosarcina thermophila contains a corrinoid/iron-sulfur enzyme composed of two subunits (delta and gamma). The cdhD and cdhE genes, which encode the delta and gamma subunits, respectively, were cloned and sequenced. The cdhD gene is upstream of and separated by 3 bp from cdhE. Both genes are preceded by apparent ribosome-binding sites. Northern (RNA) blot and primer extension analyses indicated that cdhD and cdhE are cotranscribed from a promoter located several kilobases upstream of cdhD. The putative CdhD and CdhE sequences are 37% identical to the sequences deduced from the genes encoding the beta and alpha subunits of the corrinoid/iron-sulfur enzyme from Clostridium thermoaceticum. The CdhE sequence had a four-cysteine motif with the potential to bind a 4Fe-4S cluster previously identified in the corrinoid/iron-sulfur enzyme by electron paramagnetic resonance spectroscopy. A T7 RNA polymerase/promoter system was used to produce CdhD and CdhE independently in Escherichia coli. The purified CdhD protein was reconstituted with hydroxocobalamin in the base-on configuration. The purified CdhE protein exhibited an Fe-S center and base-off cobalamin binding in which the benzimidazole base nitrogen atom was no longer a lower axial ligand to the cobalt atom. << Less
-
Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri.
Grahame D.A., DeMoll E.
In methanogens, the acetyl-CoA decarbonylase synthase (ACDS) complex, which has five different subunits, catalyzes synthesis and cleavage of acetyl-CoA according to the reaction: CO2 + 2H+ + 2e-+ CH3-H4SPt + CoA <--> acetyl-CoA + H4SPt + H2O, where H4SPt and CH3-H4SPt are tetrahydrosarcinapterin a ... >> More
In methanogens, the acetyl-CoA decarbonylase synthase (ACDS) complex, which has five different subunits, catalyzes synthesis and cleavage of acetyl-CoA according to the reaction: CO2 + 2H+ + 2e-+ CH3-H4SPt + CoA <--> acetyl-CoA + H4SPt + H2O, where H4SPt and CH3-H4SPt are tetrahydrosarcinapterin and N5-methyl-tetrahydrosarcinapterin, respectively. We have dissociated the ACDS complex into three protein components by limited proteolytic digestion. Catalysis of acetyl-CoA synthesis was lost in parallel with the loss of the intact beta subunit; however, no decrease in activity was detected in any of three partial reactions found to be catalyzed by distinct protein components of the proteolyzed ACDS complex: (a) CO dehydrogenase, catalyzed by the alpha epsilon component, (b) CH3-H4pteridine:cob(I)amide-protein methyltransferase, catalyzed by the intact gamma subunit and fragments of the delta subunit, and (c) acetyltransferase, catalyzed by a truncated form of the beta subunit. The results indicated that the beta subunit is responsible for binding CoA and acetyl-CoA and suggested that acetyl-enzyme formation occurs on the beta subunit. A value of 5.5 x [H+]-1 M-1 was determined for the equilibrium constant of the following reaction at pH 7.5 and 25 degrees C: CH3-H4SPt + cob(I)amide-protein + H+ <--> H4SPt + CH3-cob(III)amide-protein. << Less
Comments
As the precise nature of the corrinoid is not known, it has not been included in the reactive part of the [corrinoid Fe-S protein] macromolecule.