Enzymes
UniProtKB help_outline | 1,683 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 2,3-saturated acyl-CoA Identifier CHEBI:65111 Charge -4 Formula C24H35N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC[*] 2D coordinates Mol file for the small molecule Search links Involved in 336 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10685
Reactive part
help_outline
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 172 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a (2E)-enoyl-CoA Identifier CHEBI:58856 Charge -4 Formula C24H33N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\[*] 2D coordinates Mol file for the small molecule Search links Involved in 230 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10686
Reactive part
help_outline
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 163 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44704 | RHEA:44705 | RHEA:44706 | RHEA:44707 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Identification and characterization of new long chain acyl-CoA dehydrogenases.
He M., Pei Z., Mohsen A.W., Watkins P., Murdoch G., Van Veldhoven P.P., Ensenauer R., Vockley J.
Long-chain fatty acids are an important source of energy in muscle and heart where the acyl-CoA dehydrogenases (ACADs) participate in consecutive cycles of β-oxidation to generate acetyl-CoA and reducing equivalents for generating energy. However, the role of long-chain fatty acid oxidation in the ... >> More
Long-chain fatty acids are an important source of energy in muscle and heart where the acyl-CoA dehydrogenases (ACADs) participate in consecutive cycles of β-oxidation to generate acetyl-CoA and reducing equivalents for generating energy. However, the role of long-chain fatty acid oxidation in the brain and other tissues that do not rely on fat for energy is poorly understood. Here we characterize two new ACADs, ACAD10 and ACAD11, both with significant expression in human brain. ACAD11 utilizes substrates with primary carbon chain lengths between 20 and 26, with optimal activity towards C22CoA. The combination of ACAD11 with the newly characterized ACAD9 accommodates the full spectrum of long chain fatty acid substrates presented to mitochondrial β-oxidation in human cerebellum. ACAD10 has significant activity towards the branched-chain substrates R and S, 2 methyl-C15-CoA and is highly expressed in fetal but not adult brain. This pattern of expression is similar to that of LCAD, another ACAD previously shown to be involved in long branched chain fatty acid metabolism. Interestingly, the ACADs in human cerebellum were found to have restricted cellular distribution. ACAD9 was most highly expressed in the granular layer, ACAD11 in the white matter, and MCAD in the molecular layer and axons of specific neurons. This compartmentalization of ACADs in the human central nerve system suggests that β-oxidation in cerebellum participates in different functions other than generating energy, for example, the synthesis and/or degradation of unique cellular lipids and catabolism of aromatic amino acids, compounds that are vital to neuronal function. << Less
Mol. Genet. Metab. 102:418-429(2011) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.