Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphate Identifier CHEBI:58608 Charge -2 Formula C5H5O8PR2 SMILEShelp_outline [O-]P([O-])(=O)OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 2-acyl-sn-glycerol 3-phosphate Identifier CHEBI:64982 Charge -2 Formula C4H6O7PR SMILEShelp_outline OC[C@H](COP([O-])([O-])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,526 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44648 | RHEA:44649 | RHEA:44650 | RHEA:44651 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid.
Sonoda H., Aoki J., Hiramatsu T., Ishida M., Bandoh K., Nagai Y., Taguchi R., Inoue K., Arai H.
Lysophosphatidic acid (LPA) is a lipid mediator with diverse biological properties, although its synthetic pathways have not been completely solved. We report the cloning and characterization of a novel phosphatidic acid (PA)-selective phospholipase A(1) (PLA(1)) that produces 2-acyl-LPA. The PLA( ... >> More
Lysophosphatidic acid (LPA) is a lipid mediator with diverse biological properties, although its synthetic pathways have not been completely solved. We report the cloning and characterization of a novel phosphatidic acid (PA)-selective phospholipase A(1) (PLA(1)) that produces 2-acyl-LPA. The PLA(1) was identified in the GenBank(TM) data base as a close homologue of phosphatidylserine (PS)-specific PLA(1) (PS-PLA(1)). When expressed in insect Sf9 cells, this enzyme was recovered from the Triton X-100-insoluble fraction and did not show any catalytic activity toward exogenously added phospholipid substrates. However, culture medium obtained from Sf9 cells expressing the enzyme was found to activate EDG7/LPA(3), a cellular receptor for 2-acyl-LPA. The activation of EDG7 was further enhanced when the cells were treated with phorbol ester or a bacterial phospholipase D, suggesting involvement of phospholipase D in the process. In the latter condition, an increased level of LPA, but not other lysophospholipids, was confirmed by mass spectrometry analyses. Expression of the enzyme is observed in several human tissues such as prostate, testis, ovary, pancreas, and especially platelets. These data show that the enzyme is a membrane-associated PA-selective PLA(1) and suggest that it has a role in LPA production. << Less
J. Biol. Chem. 277:34254-34263(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): Possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1.
Yamashita A., Kumazawa T., Koga H., Suzuki N., Oka S., Sugiura T.
GPR55 is a seven-transmembrane G-protein-coupled receptor that has been proposed as a novel type of cannabinoid receptor. Previously, we identified lysophosphatidylinositol (LPI), in particular 2-arachidonoyl-LPI, as an agonist for GPR55. In the present study, we examined whether intracellular pho ... >> More
GPR55 is a seven-transmembrane G-protein-coupled receptor that has been proposed as a novel type of cannabinoid receptor. Previously, we identified lysophosphatidylinositol (LPI), in particular 2-arachidonoyl-LPI, as an agonist for GPR55. In the present study, we examined whether intracellular phospholipase A1 (DDHD domain containing 1, or DDHD1), previously identified as phosphatidic acid (PA)-preferring PLA1 (PA-PLA1), is involved in the formation of 2-arachidonoyl-LPI. HEK293 cells expressing DDHD1 produced [(3)H]arachidonic acid-containing LPI after prelabeling with [(3)H]arachidonic acid and subsequent activation by ionomycin; the formation of [(3)H]LPI was inhibited by n-butanol and the overexpression of an inactive PLD1 mutant PLD1K898R. DDHD1 was translocated from the cytosol to membranes upon ionomycin treatment. A purified recombinant DDHD1 formed [(3)H]LPI when incubated with [(3)H]PI; the V(max) and apparent K(m) were 190 micromol/min/mg protein and 10 mol% PI, respectively. DDHD1 binds PA, and the addition of PA to DDHD1 increased the affinity for PI (K(m) ; 3 mol%) and augmented the PI-PLA1 activity. DDHD1 activated by PA was returned to a basal state by its own PA-hydrolytic activity. These results implicate DDHD1 in the formation of 2-arachidonoyl-LPI and indicate that the process is modulated by PA released by phospholipase D. Similar observations for the production of arachidonic acid-containing LPI in neuroblastoma cells suggest the DDHD1-LPI-GPR55 axis to be involved in functions in the brain. << Less
Biochim. Biophys. Acta 1801:711-720(2010) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta.
Hiramatsu T., Sonoda H., Takanezawa Y., Morikawa R., Ishida M., Kasahara K., Sanai Y., Taguchi R., Aoki J., Arai H.
We have identified a novel phospholipase A1, named mPA-PLA1beta, which is specifically expressed in human testis and characterized it biochemically together with previously identified mPA-PLA1alpha. The sequence of mPAPLA1beta encodes a 460-amino acid protein containing a lipase domain with signif ... >> More
We have identified a novel phospholipase A1, named mPA-PLA1beta, which is specifically expressed in human testis and characterized it biochemically together with previously identified mPA-PLA1alpha. The sequence of mPAPLA1beta encodes a 460-amino acid protein containing a lipase domain with significant homology to the previously identified phosphatidic acid (PA)-selective PLA1, mPA-PLA1alpha. mPA-PLA1beta contains a short lid and deleted beta9 loop, which are characteristics of PLA1 molecules in the lipase family, and is a member of a subfamily in the lipase family that includes mPA-PLA1alpha and phosphatidylserine-specific PLA1. Both mPA-PLA1beta and mPA-PLA1alpha recombinant proteins exhibited PA-specific PLA1 activity and were vanadate-sensitive. When mPAPLA1beta-expressing cells were treated with bacterial phospholipase D, the cells produced lysophosphatidic acid (LPA). In both mPA-PLA1alpha and beta-expressing cells, most of the PA generated by the phospholipase D (PLD) treatment was converted to LPA, whereas in control cells it was converted to diacylglycerol. When expressed in HeLa cells most mPA-PLA1alpha protein was recovered from the cell supernatant. By contrast, mPA-PLA1beta was recovered almost exclusively from cells. Consistent with this observation, we found that mPA-PLA1beta has higher affinity to heparin than mPA-PLA1alpha. We also found that the membrane-associated mPA-PLA1s were insoluble in solubilization by 1% Triton X-100 and were detected in Triton X-100-insoluble buoyant fractions of sucrose gradients. The present study raises the possibility that production of LPA by mPA-PLA1alpha and -beta occurs on detergent-resistant membrane domains of the cells where they compete with lipid phosphate phosphatase for PA. << Less
J. Biol. Chem. 278:49438-49447(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics.
Baba T., Kashiwagi Y., Arimitsu N., Kogure T., Edo A., Maruyama T., Nakao K., Nakanishi H., Kinoshita M., Frohman M.A., Yamamoto A., Tani K.
Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully ... >> More
Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis. << Less
J. Biol. Chem. 289:11497-11511(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.