Enzymes
UniProtKB help_outline | 2,891 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Name help_outline
3,4-dihydroxy-5-all-trans-polyprenylbenzoate
Identifier
CHEBI:64694
Charge
-1
Formula
C7H5O4(C5H8)n
Search links
Involved in 8 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:10930Polymer name: 3,4-dihydroxy-5-all-trans-polyprenylbenzoatePolymerization index help_outline nFormula C7H5O4(C5H8)nCharge (-1)(0)nMol File for the polymer
-
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
3-methoxy,4-hydroxy-5-all-trans-polyprenylbenzoate
Identifier
CHEBI:84443
Charge
-1
Formula
(C5H8)nC8H7O4
Search links
Involved in 7 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:10931Polymer name: 3-methoxy,4-hydroxy-5-all-trans-polyprenylbenzoatePolymerization index help_outline nFormula C8H7O4(C5H8)nCharge (-1)(0)nMol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44452 | RHEA:44453 | RHEA:44454 | RHEA:44455 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis.
Poon W.W., Barkovich R.J., Hsu A.Y., Frankel A., Lee P.T., Shepherd J.N., Myles D.C., Clarke C.F.
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to gr ... >> More
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria. << Less
J. Biol. Chem. 274:21665-21672(1999) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis.
Jonassen T., Clarke C.F.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, co ... >> More
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested. << Less
J. Biol. Chem. 275:12381-12387(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.