Reaction participants Show >> << Hide
- Name help_outline (9Z)-hexadecenoyl-CoA Identifier CHEBI:61540 Charge -4 Formula C37H60N7O17P3S InChIKeyhelp_outline QBYOCCWNZAOZTL-MDMKAECGSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)CCCCCCC/C=C\CCCCCC)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sn-glycerol 3-phosphate Identifier CHEBI:57597 (Beilstein: 6115564) help_outline Charge -2 Formula C3H7O6P InChIKeyhelp_outline AWUCVROLDVIAJX-GSVOUGTGSA-L SMILEShelp_outline OC[C@@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 52 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-(9Z-hexadecenoyl)-sn-glycero-3-phosphate Identifier CHEBI:74694 Charge -2 Formula C19H35O7P InChIKeyhelp_outline GLGQZYWTNAOWHT-JTHGQSKGSA-L SMILEShelp_outline [H][C@@](O)(COC(=O)CCCCCCC\C=C/CCCCCC)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44188 | RHEA:44189 | RHEA:44190 | RHEA:44191 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
The initial step of the glycerolipid pathway: identification of glycerol-3-phosphate / dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae.
Zheng Z., Zou J.
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis p ... >> More
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis pathway in Saccharomyces cerevisiae. Disruption of the open reading frame YBL011w, corresponding to a gene previously identified as a choline transporter suppressor (SCT1), resulted in a substantial decrease of total cellular G-3-P acyltransferase activity. A yeast strain disrupted at the open reading frame YKR067w, which encodes a protein closely related to Sct1p, also exhibited a dramatic reduction in G-3-P acyltransferase activity. Molecular characterizations of the genes revealed that a missense mutation in YKR067w accounted for a defect in the activities of the G-3-P acyltransferase in the yeast mutant strain TTA1. Heterologous expression of YKR067w in Escherichia coli further confirmed its enzyme activity. These results indicate that YKR067w and YBL011w, designated herein as GAT1 and GAT2(SCT1), respectively, are yeast G-3-P acyltransferase genes. Furthermore, biochemical results are presented to show that both Gat1p and Gat2p(Sct1p) are G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferases. The fatty acyl specificity of Gat1p is similar to that of the mammalian microsomal G-3-P acyltransferase, as it can effectively utilize a broad range of fatty acids as acyl donors. In contrast, Gat2p(Sct1p) displayed preference toward 16-carbon fatty acids. The most notable of the altered phospholipid compositions of the gat1Delta and gat2(sct1)Delta strains are a decreased phosphatidic acid pool and an increased phosphatidylserine/phosphatidylinositol ratio. This did not appear to affect the mutants as no growth defect was found. However, null mutations of both GAT1 and GAT2(SCT1) are synthetically lethal to yeast. << Less
J. Biol. Chem. 276:41710-41716(2001) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.