Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octanal Identifier CHEBI:17935 (Beilstein: 1744086; CAS: 124-13-0) help_outline Charge 0 Formula C8H16O InChIKeyhelp_outline NUJGJRNETVAIRJ-UHFFFAOYSA-N SMILEShelp_outline CCCCCCCC=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octanoate Identifier CHEBI:25646 (Beilstein: 3588079; CAS: 74-81-7) help_outline Charge -1 Formula C8H15O2 InChIKeyhelp_outline WWZKQHOCKIZLMA-UHFFFAOYSA-M SMILEShelp_outline C(CCCCCC)C(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44100 | RHEA:44101 | RHEA:44102 | RHEA:44103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterisation of recombinant human fatty aldehyde dehydrogenase: implications for Sjoegren-Larsson syndrome.
Lloyd M.D., Boardman K.D., Smith A., van den Brink D.M., Wanders R.J., Threadgill M.D.
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sjögren- ... >> More
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sjögren-Larsson syndrome, a neurological disorder resulting in physical and mental handicaps. Microsomal FALDH was expressed in E. coli and purified. Using an in vitro activity assay an optimum pH of approximately 9.5 and temperature of approximately 35 degrees C were determined. Medium- and long-chain fatty aldehydes were converted to the corresponding acids and kinetic parameters determined. The enzyme showed high activity with heptanal, tetradecanal, hexadecanal and octadecanal with lower activities for the other tested substrates. The enzyme was also able to convert some fatty alcohol substrates to their corresponding aldehydes and acids, at 25-30% the rate of aldehyde oxidation. A structural model of FALDH has been constructed, and catalytically important residues have been proposed to be involved in alcohol and aldehyde oxidation: Gln-120, Glu-207, Cys-241, Phe-333, Tyr-410 and His-411. These results place FALDH in a central role in the fatty alcohol/acid interconversion cycle, and provide a direct link between enzyme inactivation and disease pathology caused by accumulation of alcohols. << Less
J. Enzym. Inhib. Med. Chem. 22:584-590(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress.
Brocker C., Lassen N., Estey T., Pappa A., Cantore M., Orlova V.V., Chavakis T., Kavanagh K.L., Oppermann U., Vasiliou V.
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the ... >> More
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic stress-induced apoptosis caused by increased extracellular concentrations of sucrose or sodium chloride. Purified recombinant ALDH7A1 efficiently metabolized a number of aldehyde substrates, including the osmolyte precursor, betaine aldehyde, lipid peroxidation-derived aldehydes, and the intermediate lysine degradation product, alpha-aminoadipic semialdehyde. The crystal structure for ALDH7A1 supports the enzyme's substrate specificities. Tissue distribution studies in mice showed the highest expression of ALDH7A1 protein in liver, kidney, and brain, followed by pancreas and testes. ALDH7A1 protein was found in the cytosol, nucleus, and mitochondria, making it unique among the aldehyde dehydrogenase enzymes. Analysis of human and mouse cDNA sequences revealed mitochondrial and cytosolic transcripts that are differentially expressed in a tissue-specific manner in mice. In conclusion, ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. << Less
J. Biol. Chem. 285:18452-18463(2010) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity.
Brocker C., Cantore M., Failli P., Vasiliou V.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folini ... >> More
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation. << Less
Chem. Biol. Interact. 191:269-277(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A gatekeeper helix determines the substrate specificity of Sjogren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase.
Keller M.A., Zander U., Fuchs J.E., Kreutz C., Watschinger K., Mueller T., Golderer G., Liedl K.R., Ralser M., Krautler B., Werner E.R., Marquez J.A.
Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic struct ... >> More
Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations. << Less
Nat. Commun. 5:4439-4439(2014) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification.
Kitamura T., Takagi S., Naganuma T., Kihara A.
Aldehyde dehydrogenases (ALDHs) catalyse the conversion of toxic aldehydes into non-toxic carboxylic acids. Of the 21 ALDHs in mice, it is the ALDH3 family members (ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2 and ALDH3B3) that are responsible for the removal of lipid-derived aldehydes. However, ALDH3B2 and ... >> More
Aldehyde dehydrogenases (ALDHs) catalyse the conversion of toxic aldehydes into non-toxic carboxylic acids. Of the 21 ALDHs in mice, it is the ALDH3 family members (ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2 and ALDH3B3) that are responsible for the removal of lipid-derived aldehydes. However, ALDH3B2 and ALDH3B3 have yet to be characterized. In the present study, we examined the enzyme activity, tissue distribution and subcellular localization of ALDH3B2 and ALDH3B3. Both were found to exhibit broad substrate preferences from medium-to long-chain aldehydes, resembling ALDH3A2 and ALDH3B1. Although ALDH3B2 and ALDH3B3 share extremely high sequence similarity, their localizations differ, with ALDH3B2 found in lipid droplets and ALDH3B3 localized to the plasma membrane. Both were modified by prenylation at their C-termini; this modification greatly influenced their membrane localization and enzymatic activity towards hexadecanal. We found that their C-terminal regions, particularly the two tryptophan residues (Trp462 and Trp469) of ALDH3B2 and the two arginine residues (Arg462 and Arg463) of ALDH3B3, were important for the determination of their specific localization. Abnormal quantity and perhaps quality of lipid droplets are implicated in several metabolic diseases. We speculate that ALDH3B2 acts to remove lipid-derived aldehydes in lipid droplets generated via oxidative stress as a quality control mechanism. << Less
Biochem. J. 465:79-87(2015) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.