Reaction participants Show >> << Hide
- Name help_outline octadecanal Identifier CHEBI:17034 (CAS: 638-66-4) help_outline Charge 0 Formula C18H36O InChIKeyhelp_outline FWWQKRXKHIRPJY-UHFFFAOYSA-N SMILEShelp_outline CCCCCCCCCCCCCCCCCC=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octadecanoate Identifier CHEBI:25629 (CAS: 646-29-7) help_outline Charge -1 Formula C18H35O2 InChIKeyhelp_outline QIQXTHQIDYTFRH-UHFFFAOYSA-M SMILEShelp_outline C(CCCCCCCCCC)CCCCCCC(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 38 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44020 | RHEA:44021 | RHEA:44022 | RHEA:44023 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Involvement of microsomal fatty aldehyde dehydrogenase in the alpha-oxidation of phytanic acid.
Verhoeven N.M., Jakobs C., Carney G., Somers M.P., Wanders R.J., Rizzo W.B.
We investigated the role of microsomal fatty aldehyde dehydrogenase (FALDH) in the conversion of pristanal into pristanic acid. Cultured skin fibroblasts from controls and patients with Sjögren-Larsson syndrome (SLS) who are genetically deficient in FALDH activity were incubated with [2,3-(3)H]phy ... >> More
We investigated the role of microsomal fatty aldehyde dehydrogenase (FALDH) in the conversion of pristanal into pristanic acid. Cultured skin fibroblasts from controls and patients with Sjögren-Larsson syndrome (SLS) who are genetically deficient in FALDH activity were incubated with [2,3-(3)H]phytanic acid. The release of aqueous-soluble radioactivity by the SLS cells was decreased to 25% of normal, consistent with an intact formation of pristanal but a deficiency of further oxidation. SLS cells also accumulated four-fold more radioactivity in N-alkyl-phosphatidyl ethanolamine, which arises from incorporation of free aldehyde into phosphatidyl ethanolamine. Recombinant human FALDH expressed in Chinese hamster ovary cells readily oxidized pristanal and cultured fibroblasts from SLS patients showed a severe deficiency in FALDH activity (13% of normal) when pristanal was used as substrate. Nevertheless, SLS patients did not accumulate phytanic acid in their plasma. We conclude that FALDH is involved in the oxidation of pristanal to pristanic acid and that this reaction is deficient in patients with SLS. << Less
FEBS Lett. 429:225-228(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterisation of recombinant human fatty aldehyde dehydrogenase: implications for Sjoegren-Larsson syndrome.
Lloyd M.D., Boardman K.D., Smith A., van den Brink D.M., Wanders R.J., Threadgill M.D.
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sjögren- ... >> More
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sjögren-Larsson syndrome, a neurological disorder resulting in physical and mental handicaps. Microsomal FALDH was expressed in E. coli and purified. Using an in vitro activity assay an optimum pH of approximately 9.5 and temperature of approximately 35 degrees C were determined. Medium- and long-chain fatty aldehydes were converted to the corresponding acids and kinetic parameters determined. The enzyme showed high activity with heptanal, tetradecanal, hexadecanal and octadecanal with lower activities for the other tested substrates. The enzyme was also able to convert some fatty alcohol substrates to their corresponding aldehydes and acids, at 25-30% the rate of aldehyde oxidation. A structural model of FALDH has been constructed, and catalytically important residues have been proposed to be involved in alcohol and aldehyde oxidation: Gln-120, Glu-207, Cys-241, Phe-333, Tyr-410 and His-411. These results place FALDH in a central role in the fatty alcohol/acid interconversion cycle, and provide a direct link between enzyme inactivation and disease pathology caused by accumulation of alcohols. << Less
J. Enzym. Inhib. Med. Chem. 22:584-590(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.