Reaction participants Show >> << Hide
- Name help_outline 5-hydroxy-3-[(3aS,4S,5R,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate Identifier CHEBI:83736 Charge -1 Formula C13H19O4 InChIKeyhelp_outline PTOAZNZPJAHUEF-XHSYRHOGSA-M SMILEShelp_outline C[C@]12CC[C@@H](O)[C@@H](CCC([O-])=O)[C@@H]1CCC2=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-[(3aS,4S,5R,7aS)-5-hydroxy-7a-methyl-1-oxo-octahydro-1H-inden-4-yl]propanoyl-CoA Identifier CHEBI:83738 Charge -4 Formula C34H50N7O19P3S InChIKeyhelp_outline AKNIQSRWPADUMX-ODLRQIBISA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC[C@H]1[C@@H]2CCC(=O)[C@@]2(C)CC[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43832 | RHEA:43833 | RHEA:43834 | RHEA:43835 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria.
Casabon I., Crowe A.M., Liu J., Eltis L.D.
The cholesterol catabolic pathway occurs in most mycolic acid-containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 is one of four predicted acyl-CoA synthetases potentially involved in cholesterol catabolism. A Δfa ... >> More
The cholesterol catabolic pathway occurs in most mycolic acid-containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 is one of four predicted acyl-CoA synthetases potentially involved in cholesterol catabolism. A ΔfadD3 mutant of RHA1 grew on cholesterol to half the yield of wild-type and accumulated 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), consistent with the catabolism of half the steroid molecule. This phenotype was rescued by fadD3 of Mtb. Moreover, RHA1 but not ΔfadD3 grew on HIP. Purified FadD3(Mtb) catalysed the ATP-dependent CoA thioesterification of HIP and its hydroxylated analogues, 5α-OH HIP and 1β-OH HIP. The apparent specificity constant (k(cat) /K(m) ) of FadD3(Mtb) for HIP was 7.3 ± 0.3 × 10(5) M(-1) s(-1) , 165 times higher than for 5α-OH HIP, while the apparent K(m) for CoASH was 110 ± 10 μM. In contrast to enzymes involved in the catabolism of rings A and B, FadD3(Mtb) did not detectably transform a metabolite with a partially degraded C17 side-chain. Overall, these results indicate that FadD3 is a HIP-CoA synthetase that initiates catabolism of steroid rings C and D after side-chain degradation is complete. These findings are consistent with the actinobacterial kstR2 regulon encoding ring C/D degradation enzymes. << Less
Mol. Microbiol. 87:269-283(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.