Enzymes
UniProtKB help_outline | 4,196 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2-methylbutanoyl-CoA Identifier CHEBI:57336 Charge -4 Formula C26H40N7O17P3S InChIKeyhelp_outline LYNVNYDEQMMNMZ-XGXNYEOVSA-J SMILEShelp_outline CCC(C)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10685
Reactive part
help_outline
- Name help_outline FAD Identifier CHEBI:57692 Charge -3 Formula C27H30N9O15P2 InChIKeyhelp_outline IMGVNJNCCGXBHD-UYBVJOGSSA-K SMILEShelp_outline Cc1cc2nc3c(nc(=O)[n-]c3=O)n(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 170 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-2-methylbut-2-enoyl-CoA Identifier CHEBI:57337 Charge -4 Formula C26H38N7O17P3S InChIKeyhelp_outline PMWATMXOQQZNBX-DKBZLLMOSA-J SMILEShelp_outline C\C=C(/C)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [electron-transfer flavoprotein]
Identifier
RHEA-COMP:10686
Reactive part
help_outline
- Name help_outline FADH2 Identifier CHEBI:58307 Charge -2 Formula C27H33N9O15P2 InChIKeyhelp_outline YPZRHBJKEMOYQH-UYBVJOGSSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c(N)ncnc34)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43780 | RHEA:43781 | RHEA:43782 | RHEA:43783 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase.
Ikeda Y., Dabrowski C., Tanaka K.
-
Mammalian branched-chain acyl-CoA dehydrogenases: molecular cloning and characterization of recombinant enzymes.
Vockley J., Mohsen al-W A., Binzak B., Willard J., Fauq A.
-
Purification and characterization of the 2-methyl branched-chain Acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode, Ascaris suum.
Komuniecki R., Fekete S., Thissen-Parra J.
The 2-methyl branched-chain acyl-CoA dehydrogenase was purified to homogeneity from mitochondria of the parasitic nematode, Ascaris suum. The native molecular weight of the enzyme was estimated to be 170,000 by gel filtration. The enzyme migrated as a single protein band with Mr = 42,500 during so ... >> More
The 2-methyl branched-chain acyl-CoA dehydrogenase was purified to homogeneity from mitochondria of the parasitic nematode, Ascaris suum. The native molecular weight of the enzyme was estimated to be 170,000 by gel filtration. The enzyme migrated as a single protein band with Mr = 42,500 during sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggesting that the enzyme is a tetramer composed of identical subunits. The enzyme exhibited absorbance maxima at 272, 375, and 452 with a ratio 7.9:0.8:1.0, respectively. FAD content was estimated to be 0.9 mol/mol of subunit and the absorption coefficient of FAD at 452 nm was 14.1 mM-1 cm-1. The purified enzyme dehydrogenated both 2-methylbutyryl-CoA and 2-methylvaleryl-CoA with apparent Km and Vmax values of 18 microM and 1.62 mumol/min/mg and 21 microM and 1.58 mumol/min/mg, respectively. This enzyme also appeared to dehydrogenate butyryl-CoA, valeryl-CoA, and octanoyl-CoA but at a much lower rate. The enzyme did not dehydrogenate propionyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and palmitoyl-CoA. Tiglyl-CoA and 2-methyl-2-pentenoyl-CoA were identified as reaction products from 2-methylbutyryl- and 2-methylvaleryl-CoA, respectively. Dehydrogenating activity with both substrates was inhibited by tiglyl-CoA, acetoacetyl-CoA, and straight chain acyl CoAs of increasing chain length. N-Ethylmaleimide and p-hydroxymercuribenzoate had little effect on dehydrogenating activity but the heavy metals Hg2+ and Ag2+ were potent inhibitors. Physiologically, the dehydrogenase functions as a branched-chain enoyl-CoA reductase. Incubations of A. suum submitochondrial particles, NADH, tiglyl-CoA, purified A. suum electron-transfer flavoprotein, and the 2-methyl branched-chain acyl-CoA dehydrogenase resulted in the rotenone-sensitive, dehydrogenase-dependent formation of 2-methylbutyryl-CoA. << Less
-
Electron-transfer flavoprotein from anaerobic Ascaris suum mitochondria and its role in NADH-dependent 2-methyl branched-chain enoyl-CoA reduction.
Komuniecki R., McCrury J., Thissen J., Rubin N.
Electron-transfer flavoprotein was purified to apparent homogeneity from mitochondria of the parasitic nematode, Ascaris suum. The native molecular weight of the enzyme was 70,000, as estimated by gel filtration, and it migrated as two bands with apparent subunit molecular weights of 37,000 and 31 ... >> More
Electron-transfer flavoprotein was purified to apparent homogeneity from mitochondria of the parasitic nematode, Ascaris suum. The native molecular weight of the enzyme was 70,000, as estimated by gel filtration, and it migrated as two bands with apparent subunit molecular weights of 37,000 and 31,500 during sodium dodecylsulfate polyacrylamide gel electrophoresis. The enzyme exhibited an absorption coefficient for the bound FAD of 13.5 mM-1.cm-1 at 436 nm and a protein/flavin (270 nm/436 nm) ratio of 5.6. While the ascarid enzyme is similar to its mammalian counterpart, physiologically it functions in the reverse direction, shuttling reducing power from the electron-transport chain to a soluble 2-methyl branched-chain enoyl CoA reductase. Indeed, when A. suum submitochondrial particles were incubated with NADH, 2-methylcrotonyl-CoA and purified A. suum 2-methyl branched-chain enoyl-CoA reductase, 2-methylbutyryl-CoA formation was proportional to the amount of electron-transfer flavoprotein added. << Less
-
Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism.
Andresen B.S., Christensen E., Corydon T.J., Bross P., Pilgaard B., Wanders R.J.A., Ruiter J.P.N., Simonsen H., Winter V., Knudsen I., Schroeder L.D., Gregersen N., Skovby F.
Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. W ... >> More
Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We investigated a patient with isolated 2-methylbutyrylglycinuria, suggestive of a defect in isoleucine catabolism. Enzyme assay of the patient's fibroblasts, using 2-methylbutyryl-CoA as substrate, confirmed the defect. Sequence analysis of candidate ACADs revealed heterozygosity for the common short-chain ACAD A625 variant allele and no mutations in ACAD-8 but a 100-bp deletion in short/branched-chain ACAD (SBCAD) cDNA from the patient. Our identification of the SBCAD gene structure (11 exons; >20 kb) enabled analysis of genomic DNA. This showed that the deletion was caused by skipping of exon 10, because of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine catabolism. << Less
Am. J. Hum. Genet. 67:1095-1103(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.