Reaction participants Show >> << Hide
- Name help_outline hexacosanoate Identifier CHEBI:31013 Charge -1 Formula C26H51O2 InChIKeyhelp_outline XMHIUKTWLZUKEX-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexacosanoyl-CoA Identifier CHEBI:64868 Charge -4 Formula C47H82N7O17P3S InChIKeyhelp_outline FHLYYFPJDVYWQH-CPIGOPAHSA-J SMILEShelp_outline CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43748 | RHEA:43749 | RHEA:43750 | RHEA:43751 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Dissecting the role of critical residues and substrate preference of a fatty acyl-CoA synthetase (FadD13) of Mycobacterium tuberculosis.
Khare G., Gupta V., Gupta R.K., Gupta R., Bhat R., Tyagi A.K.
Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an ... >> More
Newly emerging multi-drug resistant strains of Mycobacterium tuberculosis (M.tb) severely limit the treatment options for tuberculosis (TB); hence, new antitubercular drugs are urgently needed. The mymA operon is essential for the virulence and intracellular survival of M.tb and thus represents an attractive target for the development of new antitubercular drugs. This study is focused on the structure-function relationship of Fatty Acyl-CoA Synthetase (FadD13, Rv3089) belonging to the mymA operon. Eight site-directed mutants of FadD13 were designed, constructed and analyzed for the structural-functional integrity of the enzyme. The study revealed that mutation of Lys(487) resulted in approximately 95% loss of the activity thus demonstrating its crucial requirement for the enzymatic activity. Comparison of the kinetic parameters showed the residues Lys(172) and Ala(302) to be involved in the binding of ATP and Ser(404) in the binding of CoenzymeA. The influence of mutations of the residues Val(209) and Trp(377) emphasized their importance in maintaining the structural integrity of FadD13. Besides, we show a synergistic influence of fatty acid and ATP binding on the conformation and rigidity of FadD13. FadD13 represents the first Fatty Acyl-CoA Synthetase to display biphasic kinetics for fatty acids. FadD13 exhibits a distinct preference for C(26)/C(24) fatty acids, which in the light of earlier reported observations further substantiates the role of the mymA operon in remodeling the cell envelope of intracellular M.tb under acidic conditions. A three-dimensional model of FadD13 was generated; the docking of ATP to the active site verified its interaction with Lys(172), Ala(302) and Lys(487) and corresponded well with the results of the mutational studies. Our study provides a significant understanding of the FadD13 protein including the identification of residues important for its activity as well as in the maintenance of structural integrity. We believe that the findings of this study will provide valuable inputs in the development of inhibitors against the mymA operon, an important target for the development of antitubercular drugs. << Less
PLoS ONE 4:E8387-E8387(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein.
Steinberg S.J., Wang S.J., McGuinness M.C., Watkins P.A.
Activation of fatty acids, catalyzed by acyl-coenzyme A (acyl-CoA) synthetases, is required for their subsequent metabolism. Peroxisomes and microsomes contain very-long-chain acyl-CoA synthetases (VLCSs) capable of activating fatty acids with a chain length of 22 or more carbons. Decreased peroxi ... >> More
Activation of fatty acids, catalyzed by acyl-coenzyme A (acyl-CoA) synthetases, is required for their subsequent metabolism. Peroxisomes and microsomes contain very-long-chain acyl-CoA synthetases (VLCSs) capable of activating fatty acids with a chain length of 22 or more carbons. Decreased peroxisomal VLCS activity is, in part, responsible for the biochemical pathology in X-linked adrenoleukodystrophy (X-ALD), illustrating the importance of VLCSs in cellular fatty acid homeostasis. We previously cloned two human genes encoding proteins homologous to rat peroxisomal VLCS; one (hVLCS) is the human ortholog to the rat VLCS gene and another (hVLCS-H1) encodes a related heart-specific protein. Here, we report the cloning of a third gene (hVLCS-H2) and characterization of its protein product. The hVLCS-H2 gene is located on human chromosome 19 and encodes a 690-amino-acid protein. The amino acid sequence of hVLCS-H2 is 44-45% identical and 67-69% similar to those of both hVLCS and hVLCS-H1. COS-1 cells transiently overexpressing hVLCS-H2 activated the very-long-chain fatty acid lignocerate (C24:0) at a rate >1.5-fold higher than that of nontransfected cells (P < 0.002). The hVLCS-H2-dependent activation of long- and branched-chain fatty acids following transient transfection was less striking. However, hVLCS-H2-dependent acyl-CoA synthetase activity with long- and very-long-chain fatty acid substrates was detected in COS-1 cells stably expressing hVLCS-H2. For all substrates tested (C18:0, C20:0, C24:0, C26:0), the hVLCS-H2 catalyzed activity was significantly increased (P < 0.01 to P < 0.0001). By both Northern analysis and reverse transcription polymerase chain reaction, hVLCS-H2 is expressed primarily in liver. Indirect immunofluorescence of COS-1 cells or human hepatoma-derived HepG2 cells expressing epitope-tagged hVLCS-H2 revealed that the protein was associated with the endoplasmic reticulum but not with peroxisomes. Thus, the primary role of hVLCS-H2 is likely to be in fatty acid elongation or complex lipid synthesis rather than in degradation. << Less
Mol. Genet. Metab. 68:32-42(1999) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.