Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline tetradecanoate Identifier CHEBI:30807 (Beilstein: 3589340) help_outline Charge -1 Formula C14H27O2 InChIKeyhelp_outline TUNFSRHWOTWDNC-UHFFFAOYSA-M SMILEShelp_outline C(CCCCCCCC)CCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline tetradecanoyl-AMP Identifier CHEBI:83626 Charge -1 Formula C24H39N5O8P InChIKeyhelp_outline BAGJLYSFNJZQIG-FGSUIDRYSA-M SMILEShelp_outline CCCCCCCCCCCCCC(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43704 | RHEA:43705 | RHEA:43706 | RHEA:43707 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme.
Liu Z., Ioerger T.R., Wang F., Sacchettini J.C.
Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases (FAALs) or fatty acyl-CoA ligases based on sequence analysis. FadD10, involved in the synthesis of a virulence-related lipopeptide, was ... >> More
Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases (FAALs) or fatty acyl-CoA ligases based on sequence analysis. FadD10, involved in the synthesis of a virulence-related lipopeptide, was mis-annotated as a fatty acyl-CoA ligase; however, it is in fact a FAAL that transfers fatty acids to an acyl carrier protein (Rv0100). In this study, we have determined the structures of FadD10 in both the apo-form and the complexed form with dodecanoyl-AMP, where we see for the first time an adenylate-forming enzyme that does not adopt a closed conformation for catalysis. Indeed, this novel conformation of FadD10, facilitated by its unique inter-domain and intermolecular interactions, is critical for the enzyme to carry out the acyl transfer onto Rv0100 rather than coenzyme A. This contradicts the existing model of FAALs that rely on an insertion motif for the acyltransferase specificity and thus makes FadD10 a new type of FAAL. We have also characterized the fatty acid preference of FadD10 through biological and structural analyses, and the data indicate long chain saturated fatty acids as the biological substrates of the enzyme. << Less
J. Biol. Chem. 288:18473-18483(2013) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
Leger M., Gavalda S., Guillet V., van der Rest B., Slama N., Montrozier H., Mourey L., Quemard A., Daffe M., Marrakchi H.
Mycolic acids are major and specific lipids of Mycobacterium tuberculosis cell envelope. Their synthesis requires the condensation by Pks13 of a C(22)-C(26) fatty acid with the C(50)-C(60) meromycolic acid activated by FadD32, a fatty acyl-AMP ligase essential for mycobacterial growth. A combinati ... >> More
Mycolic acids are major and specific lipids of Mycobacterium tuberculosis cell envelope. Their synthesis requires the condensation by Pks13 of a C(22)-C(26) fatty acid with the C(50)-C(60) meromycolic acid activated by FadD32, a fatty acyl-AMP ligase essential for mycobacterial growth. A combination of biochemical and enzymatic approaches demonstrated that FadD32 exhibits substrate specificity for relatively long-chain fatty acids. More importantly, FadD32 catalyzes the transfer of the synthesized acyl-adenylate onto specific thioester acceptors, thus revealing the protein acyl-ACP ligase function. Therefore, FadD32 might be the prototype of a group of M. tuberculosis polyketide-synthase-associated adenylation enzymes possessing such activity. A substrate analog of FadD32 inhibited not only the enzyme activity but also mycolic acid synthesis and mycobacterial growth, opening an avenue for the development of novel antimycobacterial agents. << Less
Chem. Biol. 16:510-519(2009) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
Comments
RHEA:43704 part of RHEA:64888